Literatura científica selecionada sobre o tema "Geometry, Algebraic"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Geometry, Algebraic".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Geometry, Algebraic"
Hacon, Christopher, Daniel Huybrechts, Yujiro Kawamata e Bernd Siebert. "Algebraic Geometry". Oberwolfach Reports 12, n.º 1 (2015): 783–836. http://dx.doi.org/10.4171/owr/2015/15.
Texto completo da fontePLOTKIN, BORIS. "SOME RESULTS AND PROBLEMS RELATED TO UNIVERSAL ALGEBRAIC GEOMETRY". International Journal of Algebra and Computation 17, n.º 05n06 (agosto de 2007): 1133–64. http://dx.doi.org/10.1142/s0218196707003986.
Texto completo da fonteTyurin, N. A. "Algebraic Lagrangian geometry: three geometric observations". Izvestiya: Mathematics 69, n.º 1 (28 de fevereiro de 2005): 177–90. http://dx.doi.org/10.1070/im2005v069n01abeh000527.
Texto completo da fonteVoisin, Claire. "Algebraic Geometry versus Kähler geometry". Milan Journal of Mathematics 78, n.º 1 (17 de março de 2010): 85–116. http://dx.doi.org/10.1007/s00032-010-0113-8.
Texto completo da fonteToën, Bertrand. "Derived algebraic geometry". EMS Surveys in Mathematical Sciences 1, n.º 2 (2014): 153–245. http://dx.doi.org/10.4171/emss/4.
Texto completo da fonteDebarre, Olivier, David Eisenbud, Gavril Farkas e Ravi Vakil. "Classical Algebraic Geometry". Oberwolfach Reports 18, n.º 2 (24 de agosto de 2022): 1519–77. http://dx.doi.org/10.4171/owr/2021/29.
Texto completo da fonteDarke, Ian, e M. Reid. "Undergraduate Algebraic Geometry". Mathematical Gazette 73, n.º 466 (dezembro de 1989): 351. http://dx.doi.org/10.2307/3619332.
Texto completo da fonteDebarre, Olivier, David Eisenbud, Frank-Olaf Schreyer e Ravi Vakil. "Classical Algebraic Geometry". Oberwolfach Reports 9, n.º 2 (2012): 1845–93. http://dx.doi.org/10.4171/owr/2012/30.
Texto completo da fonteCatanese, Fabrizio, Christopher Hacon, Yujiro Kawamata e Bernd Siebert. "Complex Algebraic Geometry". Oberwolfach Reports 10, n.º 2 (2013): 1563–627. http://dx.doi.org/10.4171/owr/2013/27.
Texto completo da fonteDebarre, Olivier, David Eisenbud, Gavril Farkas e Ravi Vakil. "Classical Algebraic Geometry". Oberwolfach Reports 11, n.º 3 (2014): 1695–745. http://dx.doi.org/10.4171/owr/2014/31.
Texto completo da fonteTeses / dissertações sobre o assunto "Geometry, Algebraic"
Miscione, Steven. "Loop algebras and algebraic geometry". Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=116115.
Texto completo da fonteLurie, Jacob 1977. "Derived algebraic geometry". Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/30144.
Texto completo da fonteIncludes bibliographical references (p. 191-193).
The purpose of this document is to establish the foundations for a theory of derived algebraic geometry based upon simplicial commutative rings. We define derived versions of schemes, algebraic spaces, and algebraic stacks. Our main result is a derived analogue of Artin's representability theorem, which provides a precise criteria for the representability of a moduli functor by geometric objects of these types.
by Jacob Lurie.
Ph.D.
Balchin, Scott Lewis. "Augmented homotopical algebraic geometry". Thesis, University of Leicester, 2017. http://hdl.handle.net/2381/40623.
Texto completo da fonteRennie, Adam Charles. "Noncommutative spin geometry". Title page, contents and introduction only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phr4163.pdf.
Texto completo da fonteDos, Santos João Pedro Pinto. "Fundamental groups in algebraic geometry". Thesis, University of Cambridge, 2006. https://www.repository.cam.ac.uk/handle/1810/252015.
Texto completo da fonteSlaatsveen, Anna Aarstrand. "Decoding of Algebraic Geometry Codes". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-13729.
Texto completo da fonteBirkar, Caucher. "Topics in modern algebraic geometry". Thesis, University of Nottingham, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.421475.
Texto completo da fonteLundman, Anders. "Topics in Combinatorial Algebraic Geometry". Doctoral thesis, KTH, Matematik (Avd.), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-176878.
Texto completo da fonteDen här avhandlingen utgörs av sex artiklar inom algebraisk geometri som är nära kopplade till kombinatorik. I artikel A betraktar vi kompletta inbäddningar av glatta toriska variteter X ↪ PN sådana att för något fixt heltal k är det t-te oskulerande rummet i varje punkt av maximal dimension om och endast om t ≤ k. Vårt huvudresultat är att detta antagande är ekvivalent med att den polytop som motsvarar inbäddningen är en Cayleypolytop av ordning k, vars samtliga kanter har längd åtminstonde k. Detta resultat generaliserar en tidigare känd karaktärisering av David Perkinson. Vi visar även att ovanstående antagande är ekvivalent med antagandet att Seshadri- konstanten är lika med k i varje punkt i X. Därmed generaliserar vårt resultat ett tidigare resultat av Atsushi Ito. I artikel B introducerar vi H-konstanter, vilka mäter negativiteten av kurvor på uppblåsningar av ytor. Vi relaterar dessa konstanter till den begränsade negativitetsförmodan. Vidare erhåller vi begränsningar för konstanterna när vi enbart betraktar unioner av linjer i det reella och komplexa projektiva planet. I artikel C studerar vi Gaussavbildningen av ordning k, för k > 1, som avbildar en punkt i en varitet på det k-te oskulerande rummet i samma punkt. Vårt huvudresultat är att, i likhet med fallet k = 1, är dessa högre ordningens Gaussavbildningar ändliga på glatta variteter vars k-te oskulerande rum är fulldimensionellt överallt. Vidare ger vi konvexgeometriska beskrivningar av dessa avbildningar för toriska variteter. I artikel D klassificerar vi scheman av tjocka punkter på Hirzebruchytor vars initalsekvenser är av maximal eller nära maximal längd. Intitialgraden och initialsekvensen för sådana scheman är nära relaterade till den välkända Nagata- förmodan. I artikel E introducerar vi paketet LatticePolytopes till Macaulay2. Detta paket utökar funktionaliteten i Macaulay2 för beräkningar inom torisk och konvex geometri. I artikel F beräknar vi Seshadrikonstanten i generella punkter på glatta toriska ytor som uppfyller vissa konvexgeometriska villkor på de associerade polygonerna. Våra beräkningar koppplar samman Seshadrikonstanten i en generell punkt med jetsepareringen och det icke-normaliserade spektralvärdet hos ytorna.
QC 20151112
Hu, Jiawei. "Partial actions in algebraic geometry". Doctoral thesis, Universite Libre de Bruxelles, 2018. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/273459.
Texto completo da fonteDoctorat en Sciences
info:eu-repo/semantics/nonPublished
Garcia-Puente, Luis David. "Algebraic Geometry of Bayesian Networks". Diss., Virginia Tech, 2004. http://hdl.handle.net/10919/11133.
Texto completo da fontePh. D.
Livros sobre o assunto "Geometry, Algebraic"
Cox, David A. Using algebraic geometry. New York: Springer, 1998.
Encontre o texto completo da fonteCox, David A. Using algebraic geometry. 2a ed. New York: Springer, 2005.
Encontre o texto completo da fonteLefschetz, Solomon. Algebraic geometry. Mineola, N.Y: Dover Publications, 2005.
Encontre o texto completo da fonteHarris, Joe. Algebraic Geometry. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-2189-8.
Texto completo da fonteSommese, Andrew John, Aldo Biancofiore e Elvira Laura Livorni, eds. Algebraic Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/bfb0083328.
Texto completo da fonteAbramovich, D., A. Bertram, L. Katzarkov, R. Pandharipande e M. Thaddeus, eds. Algebraic Geometry. Providence, Rhode Island: American Mathematical Society, 2009. http://dx.doi.org/10.1090/pspum/080.1.
Texto completo da fonteAbramovich, D., A. Bertram, L. Katzarkov, R. Pandharipande e M. Thaddeus, eds. Algebraic Geometry. Providence, Rhode Island: American Mathematical Society, 2009. http://dx.doi.org/10.1090/pspum/080.2.
Texto completo da fonteKeum, JongHae, e Shigeyuki Kondō, eds. Algebraic Geometry. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.1090/conm/422.
Texto completo da fonteKurke, H., e J. H. M. Steenbrink, eds. Algebraic Geometry. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0685-3.
Texto completo da fontePerrin, Daniel. Algebraic Geometry. London: Springer London, 2008. http://dx.doi.org/10.1007/978-1-84800-056-8.
Texto completo da fonteCapítulos de livros sobre o assunto "Geometry, Algebraic"
Stillwell, John. "Algebraic Geometry". In Undergraduate Texts in Mathematics, 85–97. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55193-3_6.
Texto completo da fonteWells, Raymond O. "Algebraic Geometry". In Differential and Complex Geometry: Origins, Abstractions and Embeddings, 5–16. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58184-2_1.
Texto completo da fonteMazzola, Guerino. "Algebraic Geometry". In The Topos of Music IV: Roots, 1411–17. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64495-0_6.
Texto completo da fonteSuzuki, Joe. "Algebraic Geometry". In WAIC and WBIC with Python Stan, 153–73. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3841-4_7.
Texto completo da fonteWallach, Nolan R. "Algebraic Geometry". In Universitext, 3–29. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65907-7_1.
Texto completo da fonteElliott, David L. "Algebraic Geometry". In Bilinear Control Systems, 247–50. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1023/b101451_11.
Texto completo da fonteBeshaj, Lubjana. "Algebraic Geometry". In Mathematics in Cyber Research, 97–132. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9780429354649-3.
Texto completo da fonteSuzuki, Joe. "Algebraic Geometry". In WAIC and WBIC with R Stan, 151–70. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3838-4_7.
Texto completo da fonteHarris, Joe. "Algebraic Groups". In Algebraic Geometry, 114–29. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-2189-8_10.
Texto completo da fonteBogomolov, F. A., e A. N. Landia. "2-Cocycles and Azumaya algebras under birational transformations of algebraic schemes". In Algebraic Geometry, 1–5. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0685-3_1.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Geometry, Algebraic"
Sharir, Micha. "Algebraic Techniques in Geometry". In ISSAC '18: International Symposium on Symbolic and Algebraic Computation. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3208976.3209028.
Texto completo da fonteRoan, Shi-shyr. "Algebraic Geometry and Physics". In Third Asian Mathematical Conference 2000. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777461_0042.
Texto completo da fonteLÊ, DŨNG TRÁNG, e BERNARD TEISSIER. "GEOMETRY OF CHARACTERISTIC VARIETIES". In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0003.
Texto completo da fonteBorghesi, Simone. "Cohomology operations and algebraic geometry". In International Conference in Homotopy Theory. Mathematical Sciences Publishers, 2007. http://dx.doi.org/10.2140/gtm.2007.10.75.
Texto completo da fonteBIRKAR, CAUCHER. "BIRATIONAL GEOMETRY OF ALGEBRAIC VARIETIES". In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0068.
Texto completo da fonteSoleev, A., e N. Soleeva. "Power geometry and algebraic equations". In INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS 2013 (ICMSS2013): Proceedings of the International Conference on Mathematical Sciences and Statistics 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4823880.
Texto completo da fonteDaniyarova, E., A. Myasnikov e V. Remeslennikov. "Unification theorems in algebraic geometry". In A Festschrift in Honor of Anthony Gaglione. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812793416_0007.
Texto completo da fonteBarczik, Günter, Oliver Labs e Daniel Lordick. "Algebraic Geometry in Architectural Design". In eCAADe 2009: Computation: The New Realm of Architectural Design. eCAADe, 2009. http://dx.doi.org/10.52842/conf.ecaade.2009.455.
Texto completo da fonteWampler, Charles W. "Numerical algebraic geometry and kinematics". In ISSAC07: International Symposium on Symbolic and Algebraic Computation. New York, NY, USA: ACM, 2007. http://dx.doi.org/10.1145/1277500.1277506.
Texto completo da fonteCariñena, J. F., A. Ibort, G. Marmo, G. Morandi, Fernando Etayo, Mario Fioravanti e Rafael Santamaría. "Geometrical description of algebraic structures: Applications to Quantum Mechanics". In GEOMETRY AND PHYSICS: XVII International Fall Workshop on Geometry and Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3146238.
Texto completo da fonteRelatórios de organizações sobre o assunto "Geometry, Algebraic"
Bashelor, Andrew Clark. Enumerative Algebraic Geometry: Counting Conics. Fort Belvoir, VA: Defense Technical Information Center, maio de 2005. http://dx.doi.org/10.21236/ada437184.
Texto completo da fonteStiller, Peter. Algebraic Geometry and Computational Algebraic Geometry for Image Database Indexing, Image Recognition, And Computer Vision. Fort Belvoir, VA: Defense Technical Information Center, outubro de 1999. http://dx.doi.org/10.21236/ada384588.
Texto completo da fonteThompson, David C., Joseph Maurice Rojas e Philippe Pierre Pebay. Computational algebraic geometry for statistical modeling FY09Q2 progress. Office of Scientific and Technical Information (OSTI), março de 2009. http://dx.doi.org/10.2172/984161.
Texto completo da fonteBates, Daniel J., Daniel A. Brake, Wenrui Hao, Jonathan D. Hauenstein, Andrew J. Sommese e Charles W. Wampler. Real Numerical Algebraic Geometry: Finding All Real Solutions of a Polynomial System. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 2014. http://dx.doi.org/10.21236/ada597283.
Texto completo da fonteRabier, Patrick J., e Werner C. Rheinboldt. A Geometric Treatment of Implicit Differential-Algebraic Equations. Fort Belvoir, VA: Defense Technical Information Center, maio de 1991. http://dx.doi.org/10.21236/ada236991.
Texto completo da fonteWatts, Paul. Differential geometry on Hopf algebras and quantum groups. Office of Scientific and Technical Information (OSTI), dezembro de 1994. http://dx.doi.org/10.2172/89507.
Texto completo da fonteYau, Stephen S. PDE, Differential Geometric and Algebraic Methods in Nonlinear Filtering. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1993. http://dx.doi.org/10.21236/ada260967.
Texto completo da fonteYau, Stephen S. PDE, Differential Geometric and Algebraic Methods for Nonlinear Filtering. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 1996. http://dx.doi.org/10.21236/ada310330.
Texto completo da fonteMundy, Joseph L. Representation and Recognition with Algebraic Invariants and Geometric Constraint Models. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 1993. http://dx.doi.org/10.21236/ada282926.
Texto completo da fonteMundy, Joseph L. Representation and Recognition with Algebraic Invariants and Geometric Constraint Models. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1993. http://dx.doi.org/10.21236/ada271395.
Texto completo da fonte