Literatura científica selecionada sobre o tema "Geometry"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Geometry".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Geometry"
Yasbiati, Yasbiati, e Titi Nurhayati. "PENINGKATAN KEMAMPUAN MENGENAL BENTUK GEOMTETRI MELALUI MEDIA COLOUR GEOMETRY BOOK (Penelitian Tindakan Kelas pada Kelompok A TK Al-Abror Kecamatan Mangkubumi Kota Tasikmalaya Tahun 2016/2017)". JURNAL PAUD AGAPEDIA 2, n.º 1 (2 de maio de 2020): 23–35. http://dx.doi.org/10.17509/jpa.v2i1.24385.
Texto completo da fontePuspananda, Dian Ratna, Anis Umi Khoirutunnisa’, M. Zainudin, Anita Dewi Utami e Nur Rohman. "GEOMETRY TOWER ADVENTURE PADA ANAK USIA DINI DI DESA SUKOREJO KECAMATAN BOJONEGORO". J-ABDIPAMAS : Jurnal Pengabdian Kepada Masyarakat 1, n.º 1 (20 de outubro de 2017): 56. http://dx.doi.org/10.30734/j-abdipamas.v1i1.81.
Texto completo da fonteClements, Douglas C., e Michael Battista. "Geometry and Geometric Measurement". Arithmetic Teacher 33, n.º 6 (fevereiro de 1986): 29–32. http://dx.doi.org/10.5951/at.33.6.0029.
Texto completo da fonteRylov, Yuri A. "Geometry without topology as a new conception of geometry". International Journal of Mathematics and Mathematical Sciences 30, n.º 12 (2002): 733–60. http://dx.doi.org/10.1155/s0161171202012243.
Texto completo da fonteNingrum, Mallevi Agustin, e Lailatul Asmaul Chusna. "INOVASI DAKON GEOMETRI DALAM MENSTIMULASI KEMAMPUAN MENGENAL BENTUK GEOMETRI ANAK USIA DINI". Kwangsan: Jurnal Teknologi Pendidikan 8, n.º 1 (5 de agosto de 2020): 18. http://dx.doi.org/10.31800/jtp.kw.v8n1.p18--32.
Texto completo da fonteMisni, Misni, e Ferry Ferdianto. "Analisis Kesalahan dalam Menyelesaikan Soal Geometri Siswa Kelas XI SMK Bina Warga Lemahabang". Jurnal Fourier 8, n.º 2 (31 de outubro de 2019): 73–78. http://dx.doi.org/10.14421/fourier.2019.82.73-78.
Texto completo da fonteKaldor, S., e P. K. Venuvinod. "Macro-level Optimization of Cutting Tool Geometry". Journal of Manufacturing Science and Engineering 119, n.º 1 (1 de fevereiro de 1997): 1–9. http://dx.doi.org/10.1115/1.2836551.
Texto completo da fonteMoretti, Méricles Thadeu, e Adalberto Cans. "Releitura das Apreensões em Geometria e a Ideia de Expansão Figural a Partir dos Estudos de Raymond Duval". Jornal Internacional de Estudos em Educação Matemática 16, n.º 3 (26 de fevereiro de 2024): 303–10. http://dx.doi.org/10.17921/2176-5634.2023v16n3p303-310.
Texto completo da fonteJesus, Josenilton Santos de, e Elias Santiago de Assis. "Aprendizagem de Geometria Esférica Por Meio do Geogebra". Jornal Internacional de Estudos em Educação Matemática 16, n.º 3 (26 de fevereiro de 2024): 353–62. http://dx.doi.org/10.17921/2176-5634.2023v16n3p353-362.
Texto completo da fonteLarke, Patricia J. "Geometric Extravaganza: Spicing Up Geometry". Arithmetic Teacher 36, n.º 1 (setembro de 1988): 12–16. http://dx.doi.org/10.5951/at.36.1.0012.
Texto completo da fonteTeses / dissertações sobre o assunto "Geometry"
Jadhav, Rajesh. "Geometric Routing Without Geometry". Kent State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=kent1178080572.
Texto completo da fonteFléchelles, Balthazar. "Geometric finiteness in convex projective geometry". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM029.
Texto completo da fonteThis thesis is devoted to the study of geometrically finite convex projective orbifolds, following work of Ballas, Cooper, Crampon, Leitner, Long, Marquis and Tillmann. A convex projective orbifold is the quotient of a bounded, convex and open subset of an affine chart of real projective space (called a properly convex domain) by a discrete group of projective transformations that preserve it. We say that a convex projective orbifold is strictly convex if there are no non-trivial segments in the boundary of the convex subset, and round if in addition there is a unique supporting hyperplane at each boundary point. Following work of Cooper-Long-Tillmann and Crampon-Marquis, we say that a strictly convex orbifold is geometrically finite if its convex core decomposes as the union of a compact subset and of finitely many ends, called cusps, all of whose points have an injectivity radius smaller than a constant depending only on the dimension. Understanding what types of cusps may occur is crucial for the study of geometrically finite orbifolds. In the strictly convex case, the only known restriction on cusp holonomies, imposed by a generalization of the celebrated Margulis lemma proven by Cooper-Long-Tillmann and Crampon-Marquis, is that the holonomy of a cusp has to be virtually nilpotent. We give a complete characterization of the holonomies of cusps of strictly convex orbifolds and of those of round orbifolds. By generalizing a method of Cooper, which gave the only previously known example of a cusp of a strictly convex manifold with non virtually abelian holonomy, we build examples of cusps of strictly convex manifolds and round manifolds whose holonomy can be any finitely generated torsion-free nilpotent group. In joint work with M. Islam and F. Zhu, we also prove that for torsion-free relatively hyperbolic groups, relative P1-Anosov representations (in the sense of Kapovich-Leeb, Zhu and Zhu-Zimmer) that preserve a properly convex domain are exactly the holonomies of geometrically finite round manifolds.In the general case of non strictly convex projective orbifolds, no satisfactory definition of geometric finiteness is known at the moment. However, Cooper-Long-Tillmann, followed by Ballas-Cooper-Leitner, introduced a notion of generalized cusps in this context. Although they only require that the holonomy be virtually nilpotent, all previously known examples had virtually abelian holonomy. We build examples of generalized cusps whose holonomy can be any finitely generated torsion-free nilpotent group. We also allow ourselves to weaken Cooper-Long-Tillmann’s original definition by assuming only that the holonomy be virtually solvable, and this enables us to construct new examples whose holonomy is not virtually nilpotent.When a geometrically finite orbifold has no cusps, i.e. when its convex core is compact, we say that the orbifold is convex cocompact. Danciger-Guéritaud-Kassel provided a good definition of convex cocompactness for convex projective orbifolds that are not necessarily strictly convex. They proved that the holonomy of a convex cocompact convex projective orbifold is Gromov hyperbolic if and only if the associated representation is P1-Anosov. Using these results, Vinberg’s theory and work of Agol and Haglund-Wise about cubulated hyperbolic groups, we construct, in collaboration with S. Douba, T. Weisman and F. Zhu, examples of P1-Anosov representations for any cubulated hyperbolic group. This gives new examples of hyperbolic groups admitting Anosov representations
Scott, Phil. "Ordered geometry in Hilbert's Grundlagen der Geometrie". Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/15948.
Texto completo da fonteLiu, Yang, e 劉洋. "Optimization and differential geometry for geometric modeling". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B40988077.
Texto completo da fonteGreene, Michael Thomas. "Some results in geometric topology and geometry". Thesis, University of Warwick, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.397717.
Texto completo da fonteLiu, Yang. "Optimization and differential geometry for geometric modeling". Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B40988077.
Texto completo da fonteHidalgo, García Marta R. "Geometric constraint solving in a dynamic geometry framework". Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/134690.
Texto completo da fonteChuang, Wu-yen. "Geometric transitions, topological strings, and generalized complex geometry /". May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Texto completo da fonteVilla, E. "Methods of geometric measure theory in stochastic geometry". Doctoral thesis, Università degli Studi di Milano, 2007. http://hdl.handle.net/2434/28369.
Texto completo da fontePersson, Aron. "On the Existence of Electrodynamics on Manifold-like Polyfolds". Thesis, Umeå universitet, Institutionen för fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-155488.
Texto completo da fonteDen här uppsatsen betraktar huruvida klassisk elektrodynamik kan generaliseras till en rumtid som lokalt byter dimension samt om detta är matematiskt möjligt. Nyligen har forskningen utvecklat en generalisering av släta mångfalder, så kallade M-polyfolds, vilka ger oss en tillräcklig grund för att göra detta till en fysikalisk möjlighet. Dessa M-polyfolds möjliggör förmågan att definiera hastigheten av en kurva som går igenom en dimensionellt varierande rumtid. Därutöver utvecklas vissa nödvändiga förlängningar av teorin om M-polyfolds, detta för att skräddarsy teorin till ett mer fysikaliskt ramverk. Därefefter avslutas uppsatsen genom att definiera Maxwells ekvationer på M-polyfolds.
Livros sobre o assunto "Geometry"
Sal'kov, Nikolay. Geometry in education and science. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1158751.
Texto completo da fonteCollezione Maramotti (Gallery : Reggio Emilia, Italy), ed. Geometria figurativa: Figurative geometry. Cinisello Balsamo, Milano: Silvana editoriale, 2017.
Encontre o texto completo da fontePedoe, Daniel. Geometry: A comprehensive course. New York: Dover, 1988.
Encontre o texto completo da fontePedoe, Daniel. Geometry, a comprehensive course. New York: Dover Publications, 1988.
Encontre o texto completo da fonteJost, Jürgen. Riemannian geometry and geometric analysis. 3a ed. New York: Springer, 2002.
Encontre o texto completo da fonteW, Henderson David. Differential geometry: A geometric introduction. Upper Saddle River, N.J: Prentice Hall, 1998.
Encontre o texto completo da fonteQuinto, Eric, Fulton Gonzalez e Jens Christensen, eds. Geometric Analysis and Integral Geometry. Providence, Rhode Island: American Mathematical Society, 2013. http://dx.doi.org/10.1090/conm/598.
Texto completo da fonteJost, Jürgen. Riemannian Geometry and Geometric Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03118-6.
Texto completo da fonteJost, Jürgen. Riemannian Geometry and Geometric Analysis. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61860-9.
Texto completo da fonteElkadi, Mohamed, Bernard Mourrain e Ragni Piene, eds. Algebraic Geometry and Geometric Modeling. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-33275-6.
Texto completo da fonteCapítulos de livros sobre o assunto "Geometry"
Pütz, Ralph, e Ton Serné. "Geometrie Geometry". In Rennwagentechnik - Praxislehrgang Fahrdynamik, 105–41. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-16102-6_5.
Texto completo da fontePütz, Ralph, e Ton Serné. "Geometrie Geometry". In Rennwagentechnik - Praxislehrgang Fahrdynamik, 127–69. Wiesbaden: Springer Fachmedien Wiesbaden, 2019. http://dx.doi.org/10.1007/978-3-658-26704-9_5.
Texto completo da fonteVince, John. "Geometry Using Geometric Algebra". In Imaginary Mathematics for Computer Science, 229–36. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94637-5_10.
Texto completo da fonteWattenhofer, Mirjam, Roger Wattenhofer e Peter Widmayer. "Geometric Routing Without Geometry". In Structural Information and Communication Complexity, 307–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11429647_24.
Texto completo da fonteWu, Wen-tsün. "Orthogonal geometry, metric geometry and ordinary geometry". In Mechanical Theorem Proving in Geometries, 63–113. Vienna: Springer Vienna, 1994. http://dx.doi.org/10.1007/978-3-7091-6639-0_3.
Texto completo da fonteJost, Jürgen. "Geometry". In Geometry and Physics, 1–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00541-1_1.
Texto completo da fonteStillwell, John. "Geometry". In Numbers and Geometry, 37–67. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0687-3_2.
Texto completo da fonteBronshtein, Ilja N., Konstantin A. Semendyayev, Gerhard Musiol e Heiner Muehlig. "Geometry". In Handbook of Mathematics, 128–250. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05382-9_3.
Texto completo da fonteBronshtein, I. N., K. A. Semendyayev, Gerhard Musiol e Heiner Mühlig. "Geometry". In Handbook of Mathematics, 129–268. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46221-8_3.
Texto completo da fonteHurlbert, Glenn H. "Geometry". In Undergraduate Texts in Mathematics, 59–72. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-79148-7_3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Geometry"
Qing, Ni, e Wang Zhengzhi. "Geometric invariants using geometry algebra". In 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering (CCIE 2011). IEEE, 2011. http://dx.doi.org/10.1109/ccieng.2011.6008094.
Texto completo da fonteCaticha, Ariel. "Geometry from information geometry". In TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES. Author(s), 2016. http://dx.doi.org/10.1063/1.4959050.
Texto completo da fonteIvic, Aleksandar. "Number of digital convex polygons inscribed into an (m,m)-grid". In Vision Geometry II. SPIE, 1993. http://dx.doi.org/10.1117/12.165003.
Texto completo da fonteAllili, Madjid. "A deformable model with topology analysis and adaptive clustering for boundary detection". In Vision Geometry XIV. SPIE, 2006. http://dx.doi.org/10.1117/12.642353.
Texto completo da fonteNguyen, Hung, Rolf Clackdoyle e Laurent Desbat. "Automatic geometric calibration in 3D parallel geometry". In Physics of Medical Imaging, editado por Hilde Bosmans e Guang-Hong Chen. SPIE, 2020. http://dx.doi.org/10.1117/12.2549568.
Texto completo da fontePlauschinn, Erik. "Non-geometric fluxes and non-associative geometry". In Proceedings of the Corfu Summer Institute 2011. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.155.0061.
Texto completo da fonteLima, Guilherme. "In-memory Geometry Converter". In In-memory Geometry Converter. US DOE, 2023. http://dx.doi.org/10.2172/2204991.
Texto completo da fonteFernández, M., A. Tomassini, L. Ugarte, R. Villacampa, Fernando Etayo, Mario Fioravanti e Rafael Santamaría. "On Special Hermitian Geometry". In GEOMETRY AND PHYSICS: XVII International Fall Workshop on Geometry and Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3146230.
Texto completo da fonteSzabo, Richard. "Higher Quantum Geometry and Non-Geometric String Theory". In Corfu Summer Institute 2017 "Schools and Workshops on Elementary Particle Physics and Gravity". Trieste, Italy: Sissa Medialab, 2018. http://dx.doi.org/10.22323/1.318.0151.
Texto completo da fonteLai, Y. K., S. M. Hu, D. X. Gu e R. R. Martin. "Geometric texture synthesis and transfer via geometry images". In the 2005 ACM symposium. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1060244.1060248.
Texto completo da fonteRelatórios de organizações sobre o assunto "Geometry"
Chuang, Wu-yen, e /SLAC /Stanford U., Phys. Dept. Geometric Transitions, Topological Strings, and Generalized Complex Geometry. Office of Scientific and Technical Information (OSTI), junho de 2007. http://dx.doi.org/10.2172/909289.
Texto completo da fonteHeath, Daniel, e Joshua Jacobs. Geometry Playground. Washington, DC: The MAA Mathematical Sciences Digital Library, novembro de 2010. http://dx.doi.org/10.4169/loci003567.
Texto completo da fonteFoster, Karis. Exposed Geometry. Ames: Iowa State University, Digital Repository, 2014. http://dx.doi.org/10.31274/itaa_proceedings-180814-975.
Texto completo da fonteUngar, Abraham A. Hyperbolic Geometry. GIQ, 2014. http://dx.doi.org/10.7546/giq-15-2014-259-282.
Texto completo da fonteUngar, Abraham A. Hyperbolic Geometry. Jgsp, 2013. http://dx.doi.org/10.7546/jgsp-32-2013-61-86.
Texto completo da fonteEarnshaw, Connie. Overgrown geometry. Portland State University Library, janeiro de 2000. http://dx.doi.org/10.15760/etd.5380.
Texto completo da fonteButler, Lee A., e Clifford Yapp. Adaptive Geometry Shader Tessellation for Massive Geometry Display. Fort Belvoir, VA: Defense Technical Information Center, março de 2015. http://dx.doi.org/10.21236/ada616646.
Texto completo da fonteHansen, Mark D. Results in Computational Geometry: Geometric Embeddings and Query- Retrieval Problems. Fort Belvoir, VA: Defense Technical Information Center, novembro de 1990. http://dx.doi.org/10.21236/ada230380.
Texto completo da fonteCONCEPT ANALYSIS CORP PLYMOUTH MI. Missile Geometry Package. Fort Belvoir, VA: Defense Technical Information Center, março de 1989. http://dx.doi.org/10.21236/ada253181.
Texto completo da fonteZhanchun Tu, Zhanchun Tu. Geometry of Membranes. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-24-2011-45-75.
Texto completo da fonte