Literatura científica selecionada sobre o tema "Geometric preconditioner"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Geometric preconditioner".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Geometric preconditioner"
Sun, Qingtao, Runren Zhang, Ke Chen, Naixing Feng e Yunyun Hu. "Anisotropic modeling with geometric multigrid preconditioned finite-element method". GEOPHYSICS 87, n.º 3 (24 de fevereiro de 2022): A33—A36. http://dx.doi.org/10.1190/geo2021-0592.1.
Texto completo da fonteCots, Olivier, Rémy Dutto, Sophie Jan e Serge Laporte. "Geometric preconditioner for indirect shooting and application to hybrid vehicle". IFAC-PapersOnLine 58, n.º 21 (2024): 43–48. http://dx.doi.org/10.1016/j.ifacol.2024.10.140.
Texto completo da fontePan, Guangdong, e Aria Abubakar. "Iterative solution of 3D acoustic wave equation with perfectly matched layer boundary condition and multigrid preconditioner". GEOPHYSICS 78, n.º 5 (1 de setembro de 2013): T133—T140. http://dx.doi.org/10.1190/geo2012-0287.1.
Texto completo da fonteCai, Mingchao, Andy Nonaka, John B. Bell, Boyce E. Griffith e Aleksandar Donev. "Efficient Variable-Coefficient Finite-Volume Stokes Solvers". Communications in Computational Physics 16, n.º 5 (novembro de 2014): 1263–97. http://dx.doi.org/10.4208/cicp.070114.170614a.
Texto completo da fontede Prenter, F., C. V. Verhoosel, E. H. van Brummelen, J. A. Evans, C. Messe, J. Benzaken e K. Maute. "Multigrid solvers for immersed finite element methods and immersed isogeometric analysis". Computational Mechanics 65, n.º 3 (26 de novembro de 2019): 807–38. http://dx.doi.org/10.1007/s00466-019-01796-y.
Texto completo da fonteYuan, Yu-Xin, A.-Man Li, Ting Hu e Hong Liu. "An anisotropic multilevel preconditioner for solving the Helmholtz equation with unequal directional sampling intervals". GEOPHYSICS 85, n.º 6 (13 de outubro de 2020): T293—T300. http://dx.doi.org/10.1190/geo2019-0330.1.
Texto completo da fonteFENG, QUANDONG, JINGFANG HUANG, NINGMING NIE, ZAIJIU SHANG e YIFA TANG. "IMPLEMENTING ARBITRARILY HIGH-ORDER SYMPLECTIC METHODS VIA KRYLOV DEFERRED CORRECTION TECHNIQUE". International Journal of Modeling, Simulation, and Scientific Computing 01, n.º 02 (junho de 2010): 277–301. http://dx.doi.org/10.1142/s1793962310000171.
Texto completo da fonteMartynenko, S. I. "Potentialities of the Robust Multigrid Technique". Computational Methods in Applied Mathematics 10, n.º 1 (2010): 87–94. http://dx.doi.org/10.2478/cmam-2010-0004.
Texto completo da fonteNammour, Rami, e William W. Symes. "Multiparameter Inversion: Cramer's Rule for Pseudodifferential Operators". International Journal of Geophysics 2011 (2011): 1–12. http://dx.doi.org/10.1155/2011/780291.
Texto completo da fonteChen, Shu-Wen, Feng Lu e Yao Ma. "Fitting Green’s Function FFT Acceleration Applied to Anisotropic Dielectric Scattering Problems". International Journal of Antennas and Propagation 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/123739.
Texto completo da fonteTeses / dissertações sobre o assunto "Geometric preconditioner"
Dutto, Rémy. "Méthode à deux niveaux et préconditionnement géométrique en contrôle optimal. Application au problème de répartition de couple des véhicules hybrides électriques". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP088.
Texto completo da fonteMotivated by the torque split and gear shift industrial problem of hybrid electric vehicles, this work mainly proposes two new indirect optimal control problem methods. The first one is the Macro-Micro method, which is based on a bilevel decomposition of the optimal control problem and uses Bellman’s value functions at fixed times. These functions are known to be difficult to create. The main idea of this method is to approximate these functions by neural networks, which leads to a hierarchical resolution of a low dimensional optimization problem and a set of independent optimal control problems defined on smaller time intervals. The second one is a geometric preconditioning method, which allows a more efficient resolution of the optimal control problem. This method is based on a geometrical interpretation of the Pontryagin’s co-state and on the Mathieu transformation, and uses a linear diffeomorphism which transforms an ellipse into a circle. These two methods, presented separately, can be combined and lead together to a fast, robust and light resolution for the torque split and gear shift optimal control problem, closer to the embedded requirements
Capítulos de livros sobre o assunto "Geometric preconditioner"
Olas, Tomasz. "Parallel Geometric Multigrid Preconditioner for 3D FEM in NuscaS Software Package". In Parallel Processing and Applied Mathematics, 166–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55224-3_17.
Texto completo da fonteCalandra, H., S. Gratton e X. Vasseur. "A Geometric Multigrid Preconditioner for the Solution of the Helmholtz Equation in Three-Dimensional Heterogeneous Media on Massively Parallel Computers". In Modern Solvers for Helmholtz Problems, 141–55. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-28832-1_6.
Texto completo da fonteCampos, Fernando Otaviano, Rafael Sachetto Oliveira e Rodrigo Weber dos Santos. "Performance Comparison of Parallel Geometric and Algebraic Multigrid Preconditioners for the Bidomain Equations". In Computational Science – ICCS 2006, 76–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11758501_15.
Texto completo da fonteChristiansen, Lasse Hjuler, e John Bagterp Jørgensen. "New Preconditioners for Semi-linear PDE-Constrained Optimal Control in Annular Geometries". In Lecture Notes in Computational Science and Engineering, 441–52. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39647-3_35.
Texto completo da fonteLanger, U., e D. Pusch. "Comparison of Geometrical and Algebraic Multigrid Preconditioners for Data-Sparse Boundary Element Matrices". In Large-Scale Scientific Computing, 130–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11666806_13.
Texto completo da fonte"A Geometric Toolbox for Tetrahedral Finite Element Partitions". In Efficient Preconditioned Solution Methods for Elliptic Partial Differential Equations, editado por Jan Brandts, Sergey Korotov e Michal Krizek, 103–22. BENTHAM SCIENCE PUBLISHERS, 2012. http://dx.doi.org/10.2174/978160805291211101010103.
Texto completo da fonteCarpentieri, Bruno. "Krylov Subspace Methods for Big Data Analysis of Large Computational Electromagnetics Applications". In Frontiers in Artificial Intelligence and Applications. IOS Press, 2021. http://dx.doi.org/10.3233/faia210232.
Texto completo da fonteVentre, Salvatore, Bruno Carpentieri, Gaspare Giovinco, Antonello Tamburrino, Fabio Villone e Guglielmo Rubinacci. "An Effective H2-LU Preconditioner for Iterative Solution of MQS Integral-Based Formulation P". In Advances in Fusion Energy Research. From Theory to Models, Algorithms, and Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.108106.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Geometric preconditioner"
Singh, Krishna M., Eldad J. Avital, John J. R. Williams, C. Ji e A. Munjiza. "Parallel Pressure Poisson Solvers for LES of Complex Geometry Flows". In ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-29748.
Texto completo da fonteSingh, Abhishek Kumar, e Krishna Mohan Singh. "GMRES Solver for MLPG Method Applied to Heat Conduction". In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24566.
Texto completo da fonteCarrington, David B., e Vincent A. Mousseau. "Preconditioning and Solver Optimization Ideas for Radiative Transfer". In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72040.
Texto completo da fonteUdaykumar, H. S., R. Mittal e W. Shyy. "Simulation of Flow and Heat Transfer With Phase Boundaries and Complex Geometries on Cartesian Grids". In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-1093.
Texto completo da fonteKang, Suhyun, Duhun Hwang, Moonjung Eo, Taesup Kim e Wonjong Rhee. "Meta-Learning with a Geometry-Adaptive Preconditioner". In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2023. http://dx.doi.org/10.1109/cvpr52729.2023.01543.
Texto completo da fonteStroia, Iulian, Lucian Itu, Cosmin Nita, Laszlo Lazar e Constantin Suciu. "GPU accelerated geometric multigrid method: Comparison with preconditioned conjugate gradient". In 2015 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 2015. http://dx.doi.org/10.1109/hpec.2015.7322480.
Texto completo da fonteChao Chen e O. Biro. "3-D time-harmonic Eddy current problems solved by the geometric multigrid preconditioned conjugate gradient method". In IET 8th International Conference on Computation in Electromagnetics (CEM 2011). IET, 2011. http://dx.doi.org/10.1049/cp.2011.0017.
Texto completo da fonteAdrian, Simon B., Francesco P. Andriullil e Thomas F. Eibert. "A Refinement - Free Calderón Preconditioner for the Electric Field Integral Equation on Geometries with Junctions". In 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2018. http://dx.doi.org/10.1109/apusncursinrsm.2018.8609072.
Texto completo da fonteLarsen, Lance C. "Identifying the Cause of and Fixing Ill-Conditioned Matrices in Nuclear Analysis Codes". In 2020 International Conference on Nuclear Engineering collocated with the ASME 2020 Power Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icone2020-16903.
Texto completo da fonteJakupi, Pellumb, Bill Santos, Wilfred Binns, Ivan Barker e Jenny Been. "Microstructural Feature Analysis of X65 Steel Exposed to Ripple Load Testing Under Near Neutral pH Conditions". In 2014 10th International Pipeline Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/ipc2014-33230.
Texto completo da fonteRelatórios de organizações sobre o assunto "Geometric preconditioner"
Badia, S., A. Martín, J. Principe, C. Soriano e R. Rossi. D3.1 Report on nonlinear domain decomposition preconditioners and release of the solvers. Scipedia, 2021. http://dx.doi.org/10.23967/exaqute.2021.2.021.
Texto completo da fonteKalashnikova, Irina. Preconditioner and convergence study for the Quantum Computer Aided Design (QCAD) nonlinear poisson problem posed on the Ottawa Flat 270 design geometry. Office of Scientific and Technical Information (OSTI), maio de 2012. http://dx.doi.org/10.2172/1044970.
Texto completo da fonteBrosnahan e DeVries. PR-317-10702-R01 Testing for the Dilation Strength of Salt. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), dezembro de 2011. http://dx.doi.org/10.55274/r0010026.
Texto completo da fonte