Literatura científica selecionada sobre o tema "Genetic Algorthim"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Genetic Algorthim".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Genetic Algorthim"
Yani, Ahmad, Junaidi Junaidi, M. Irwanto e A. H. Haziah. "Optimum reactive power to improve power factor in industry using genetic algortihm". Indonesian Journal of Electrical Engineering and Computer Science 14, n.º 2 (1 de maio de 2019): 751. http://dx.doi.org/10.11591/ijeecs.v14.i2.pp751-757.
Texto completo da fonteNurdin, Hardisal, Muhammad Zarlis e Erna Budhiarti Nababan. "Teknik Watermarking Adaptif Menggunakan Micro Genetic Algorithm". Jurnal Inotera 1, n.º 1 (27 de julho de 2017): 64. http://dx.doi.org/10.31572/inotera.vol1.iss1.2016.id9.
Texto completo da fonteAlsuwaiket, M. A. "Feature Extraction of EEG Signals for Seizure Detection Using Machine Learning Algorthims". Engineering, Technology & Applied Science Research 12, n.º 5 (2 de outubro de 2022): 9247–51. http://dx.doi.org/10.48084/etasr.5208.
Texto completo da fonteNugroho, Herminarto, Muhammad Akram Saputra e Muhammad Fadil Anwar. "Optimasi Daya Generator Angin Melalui Pitch Angle Control dengan Particle Swarm Optimization dan Genetic Algortihm". PETIR 16, n.º 1 (25 de abril de 2023): 100–108. http://dx.doi.org/10.33322/petir.v16i1.1704.
Texto completo da fonteSari, Sri Novida, Roberto Kaban, Abdul Khaliq e Ayu Andari. "SISTEM PENJADWALAN MATA PELAJARAN SEKOLAH MENGGUNAKAN METODE HYBRID ARTIFICIAL BEE COLONY (HABC)". Jurnal Nasional Teknologi Komputer 2, n.º 1 (1 de fevereiro de 2022): 20–32. http://dx.doi.org/10.61306/jnastek.v2i1.21.
Texto completo da fonteUtami, Dwi Yuni, Elah Nurlelah e Noer Hikmah. "Attribute Selection in Naive Bayes Algorithm Using Genetic Algorithms and Bagging for Prediction of Liver Disease". JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING 4, n.º 1 (20 de julho de 2020): 76–85. http://dx.doi.org/10.31289/jite.v4i1.3793.
Texto completo da fonteLi, Mouwei. "Mended genetic algorthms and application to profile parameters optimization of tandem cold strip mill". Chinese Journal of Mechanical Engineering (English Edition) 13, supp (2000): 123. http://dx.doi.org/10.3901/cjme.2000.supp.123.
Texto completo da fonteYanto, Eri, e Ramalia Noratama Putri. "APPLICATION OF GENETIC ALGORITHM IN TOURISM ROUTE OPTIMIZATION IN PEKANBARU CITY". Journal of Applied Business and Technology 1, n.º 1 (20 de janeiro de 2020): 41–50. http://dx.doi.org/10.35145/jabt.v1i1.22.
Texto completo da fonteLi, Li. "Research on daylighting optimization of building space layout based on parametric design". Sustainable Buildings 7 (2024): 3. http://dx.doi.org/10.1051/sbuild/2024003.
Texto completo da fonteRohman, Ramdhan Saepul, Rizal Amegia Saputra e Dasya Arif Firmansaha. "Komparasi Algoritma C4.5 Berbasis PSO Dan GA Untuk Diagnosa Penyakit Stroke". CESS (Journal of Computer Engineering, System and Science) 5, n.º 1 (31 de janeiro de 2020): 155. http://dx.doi.org/10.24114/cess.v5i1.15225.
Texto completo da fonteTeses / dissertações sobre o assunto "Genetic Algorthim"
Yuret, Deniz. "From genetic algorthms to efficient optimization". Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/37727.
Texto completo da fonteVaikkathe, Ananthakrishnan. "Optimization of Synchromodal Container Transportation". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH40.
Texto completo da fonteThis thesis explores the implementation of synchromodality in hinterland container transportation. Synchromodality, an advanced form of multimodal transportation, offers enhanced flexibility and resilience for containerized freight movement. While road transport has traditionally dominated this sector, synchromodality aims to promote a strategic modal shift toward more sustainable modes of transportation, such as rail and inland waterways. The primary operational challenge lies in determining the optimal route for transporting shipments between origin and destination terminals. In the first part of this thesis, a mathematical model is developed to identify the best transportation routes, minimizing both carbon emissions and transit duration. Given the NP-hard complexity of this capacitated shortest path problem, a genetic algorithm is proposed to solve large-scale problem instances. These instances are based on the Seine Axis freight corridor in France. The results demonstrate that a modal shift from truck to rail and inland waterways can achieve up to an 80% reduction in carbon emissions. The second part extends the mathematical model to incorporate additional environmental impacts, known as external costs. A multi-objective optimization framework using the NSGA-II metaheuristic is implemented to solve the problem for large-scale scenarios effectively. In the third part, the model accounts for uncertainties in travel and transportation times. To address this, a robust optimization approach based on a min-max formulation is employed, enabling the solution of the multimodal transportation problem under uncertain conditions
Leigh, Ryan E. "Using genetic algorithms to create believable agents". abstract and full text PDF (free order & download UNR users only), 2006. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1438914.
Texto completo da fonteQuiroz, Juan C. "Interactively evolving user interfaces". abstract and full text PDF (free order & download UNR users only), 2007. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1442877.
Texto completo da fonteUritu, Doina. "A genetic algorithm for freight rail transport scheduling (FRTS)". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Encontre o texto completo da fonteVšetečka, Martin. "Optimalizace dopravní sítě". Doctoral thesis, Vysoké učení technické v Brně. Fakulta stavební, 2015. http://www.nusl.cz/ntk/nusl-390237.
Texto completo da fonteSvobodová, Jitka. "Neuronové sítě a evoluční algoritmy". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-218221.
Texto completo da fonteAlam, Sameer Information Technology & Electrical Engineering Australian Defence Force Academy UNSW. "Evolving complexity towards risk : a massive scenario generation approach for evaluating advanced air traffic management concepts". Awarded by:University of New South Wales - Australian Defence Force Academy, 2008. http://handle.unsw.edu.au/1959.4/38966.
Texto completo da fonteBeji, Hamdi. "Machine learning et algorithme évolutionnaire : prédiction et optimisation du comportement mécanique et thermique de composites via l'homogénéisation de leurs microcrostuctures". Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILN023.
Texto completo da fonteThis work focuses on the prediction and optimization, using bio-inspired approaches, of the mechanical and thermal behavior of composite materials through the homogenization of their microstructures. A numerical simulation chain, using Finite Elements, enabled the analysis of Representative Volume Elements (RVEs) for various forms of inclusions, considering their positions and orientations, as well as variations in contrasts and volume fractions. This initial step led to the generation of a database set covering the responses (in terms of thermoelastic linear characteristics) of composite microstructures.These data were then used to feed machine learning models, integrating both Machine Learning and Deep Learning approaches, with evaluation based on Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), demonstrating excellent prediction accuracy. Subsequently, the study focused on the search for optimized microstructures: coupling these numerical prediction tools with a genetic algorithm enabled the inverse analysis to obtain RVEs corresponding to prescribed values of thermoelastic characteristics.To make these innovative tools more accessible, a web interface was developed, highlighting their interactive and dynamic functionalities. This platform facilitates the exploration and intuitive exploitation of the obtained results
Sigrist, Zoé. "Contribution à l'identification de systèmes non-linéaires en milieu bruité pour la modélisation de structures mécaniques soumises à des excitations vibratoires". Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14655/document.
Texto completo da fonteThis PhD deals with the caracterisation of mechanical structures, by its structural parameters, when only noisy observations disturbed by additive measurement noises, assumed to be zero-mean white and Gaussian, are available. For this purpose, we suggest using discrete-time models with distinct linear and nonlinear parts. The first one allows the structural parameters to be retrieved whereas the second one gives information on the nonlinearity. When dealing with non-recursive Volterra series, we propose an errors-in-variables (EIV) method to jointly estimate the noise variances and the Volterra kernels. We also suggest a modified unbiased LMS algorithm to estimate the model parameters provided that the input-noise variance is known. When dealing with recursive polynomial model, we propose two methods using evolutionary algorithms. The first includes a stop protocol that takes into account the output-noise variance. In the second one, the fitness functions are based on correlation criteria in which the noise influence is removed or compensated
Capítulos de livros sobre o assunto "Genetic Algorthim"
Gabr, B., e M. Ahmed. "Assessment of Genetic Algorthim in Developing Bathymetry Using Multispectral Landsat Images". In APAC 2019, 393–400. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0291-0_55.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Genetic Algorthim"
Nuradis, Jemal, e Frezewud Lemma. "Hybrid Bat and Genetic Algorthim Approach for Cost Effective SaaS Placement in Cloud Environment". In 2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). IEEE, 2019. http://dx.doi.org/10.1109/i-smac47947.2019.9032665.
Texto completo da fonteShea, Peter J., John Peterson, Kathleen Alexander e Alcino Azevedo. "Force aggregation using genetic algortihms". In Optical Science and Technology, SPIE's 48th Annual Meeting, editado por Oliver E. Drummond. SPIE, 2003. http://dx.doi.org/10.1117/12.506449.
Texto completo da fonteDemir, Muhammet Selim, Omer Faruk Gemici e Murat Uysal. "Genetic algortihm based resource allocation technique for VLC networks". In 2017 25th Signal Processing and Communications Applications Conference (SIU). IEEE, 2017. http://dx.doi.org/10.1109/siu.2017.7960526.
Texto completo da fonteSu, Jianhai, e Timothy C. Havens. "Fuzzy community detection in social networks using a genetic algortihm". In 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2014. http://dx.doi.org/10.1109/fuzz-ieee.2014.6891611.
Texto completo da fonteZubi, H. M., R. W. Dunn, F. V. P. Robinson e M. H. El-werfelli. "Passive filter design using genetic algorthims for adjustable speed drives". In Energy Society General Meeting. IEEE, 2010. http://dx.doi.org/10.1109/pes.2010.5589799.
Texto completo da fonteFaelden, Gerard Ely U., Jose Martin Z. Maningo, Reiichiro Christian S. Nakano, Argel A. Bandala e Elmer P. Dadios. "Blind localization method for quadrotor-unmanned aerial vehicle (QUAV) utilizing genetic algortihm". In 2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM). IEEE, 2014. http://dx.doi.org/10.1109/hnicem.2014.7016214.
Texto completo da fonteBentaleb, Ali, e Ahmed Ettalbi. "Toward Cloud SaaS for web service composition optimization based on genetic algortihm". In 2016 2nd International Conference on Cloud Computing Technologies and Applications (CloudTech). IEEE, 2016. http://dx.doi.org/10.1109/cloudtech.2016.7847692.
Texto completo da fonteRussell, Alex, Garrick Orchard e Ralph Etienne-Cummings. "Configuring of Spiking Central Pattern Generator Networks for Bipedal Walking Using Genetic Algorthms". In 2007 IEEE International Symposium on Circuits and Systems. IEEE, 2007. http://dx.doi.org/10.1109/iscas.2007.378701.
Texto completo da fonteZulvia, Ferani E., R. J. Kuo e Tung-Lai Hu. "Solving CVRP with time window, fuzzy travel time and demand via a hybrid ant colony optimization and genetic algortihm". In 2012 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2012. http://dx.doi.org/10.1109/cec.2012.6252922.
Texto completo da fonte