Literatura científica selecionada sobre o tema "Genetic algorithms"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Genetic algorithms".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Genetic algorithms"
Sumida, Brian. "Genetics for genetic algorithms". ACM SIGBIO Newsletter 12, n.º 2 (junho de 1992): 44–46. http://dx.doi.org/10.1145/130686.130694.
Texto completo da fonteRaol, Jitendra R., e Abhijit Jalisatgi. "From genetics to genetic algorithms". Resonance 1, n.º 8 (agosto de 1996): 43–54. http://dx.doi.org/10.1007/bf02837022.
Texto completo da fonteBabu, M. Nishidhar, Y. Kiran e A. Ramesh V. Rajendra. "Tackling Real-Coded Genetic Algorithms". International Journal of Trend in Scientific Research and Development Volume-2, Issue-1 (31 de dezembro de 2017): 217–23. http://dx.doi.org/10.31142/ijtsrd5905.
Texto completo da fonteNico, Nico, Novrido Charibaldi e Yuli Fauziah. "Comparison of Memetic Algorithm and Genetic Algorithm on Nurse Picket Scheduling at Public Health Center". International Journal of Artificial Intelligence & Robotics (IJAIR) 4, n.º 1 (30 de maio de 2022): 9–23. http://dx.doi.org/10.25139/ijair.v4i1.4323.
Texto completo da fonteAbbas, Basim K. "Genetic Algorithms for Quadratic Equations". Aug-Sept 2023, n.º 35 (26 de agosto de 2023): 36–42. http://dx.doi.org/10.55529/jecnam.35.36.42.
Texto completo da fonteCarnahan, J., e R. Sinha. "Nature's algorithms [genetic algorithms]". IEEE Potentials 20, n.º 2 (2001): 21–24. http://dx.doi.org/10.1109/45.954644.
Texto completo da fonteFrenzel, J. F. "Genetic algorithms". IEEE Potentials 12, n.º 3 (outubro de 1993): 21–24. http://dx.doi.org/10.1109/45.282292.
Texto completo da fonteFulkerson, William F. "Genetic Algorithms". Journal of the American Statistical Association 97, n.º 457 (março de 2002): 366. http://dx.doi.org/10.1198/jasa.2002.s468.
Texto completo da fonteForrest, Stephanie. "Genetic algorithms". ACM Computing Surveys 28, n.º 1 (março de 1996): 77–80. http://dx.doi.org/10.1145/234313.234350.
Texto completo da fonteHolland, John H. "Genetic Algorithms". Scientific American 267, n.º 1 (julho de 1992): 66–72. http://dx.doi.org/10.1038/scientificamerican0792-66.
Texto completo da fonteTeses / dissertações sobre o assunto "Genetic algorithms"
Bland, Ian Michael. "Generic systolic arrays for genetic algorithms". Thesis, University of Reading, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312529.
Texto completo da fonteAguiar, Marilton Sanchotene de. "Análise formal da complexidade de algoritmos genéticos". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 1998. http://hdl.handle.net/10183/25941.
Texto completo da fonteThe objective of the work is to study the viability of treating optimization problems, considered intractable, through Genetic Algorithms, developing approaches for the qualitative evaluation of a Genetic Algorithm. Inside this theme, approached areas: complexity, classes of problems, analysis and development of algorithms and Genetic Algorithms, this last one being central object of the study. As product of the study of this theme, a development method of Genetic Algorithms is proposed, using the whole formal study of types of problems, development of approximate algorithms and complexity analysis. The fact that a problem theoretically solvable isn’t enough to mean that it is solvable in pratice. A problem is denominated easy if in the worst case it possesses an algorithm reasonably efficient. And an algorithm is said reasonably efficient when a polynomial p exists such that for any entrance size n the algorithm terminates at maximum of p(n) steps [SZW 84]. Since a polynomial can be of very high order, then an algorithm of polynomial complexity can be very inefficient. The premise of the Genetic Algorithms is that one can find approximate solutions of problems of great computational complexity by means of a process of simulated evolution [LAG 96]. As product of the study of this theme, a method of development of Genetic Algorithms with the quality conscience is proposed, using the whole formal study of types of problems, development of approximate algorithms and complexity analysis. The axiom set has the purpose of giving the semantics of the algorithm, in other words, it defines formally the operation of the algorithm, more specifically of the functions and procedures of the algorithm. And this, facilitates the planner of algorithms a larger safety in the development, because in order to prove the correction of a Genetic Algorithm that satisfies that model it is only necessary to prove that the procedures satisfy the axioms. To have conscience of the quality of an approximate algorithm, two factors are important: the accuracy and the complexity. This work lifts the important points for the study of the complexity of a Genetic Algorithm. Unhappily, they are conflicting factors, because as larger the accuracy, worse (higher) it is the complexity, and vice-versa. Thus, a study of the quality of a Genetic Algorithm, considered an approximate algorithm, would be only complete with the consideration of these two factors. But, this work provides a great step in direction of the study of the viability of the treatment of optimization problems through Genetic Algorithms.
Abu-Bakar, Nordin. "Adaptive genetic algorithms". Thesis, University of Essex, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343268.
Texto completo da fonteHayes, Christina Savannah Maria. "Generic properties of the infinite population genetic algorithm". Diss., Montana State University, 2006. http://etd.lib.montana.edu/etd/2006/hayes/HayesC0806.pdf.
Texto completo da fonteWagner, Stefan. "Looking inside genetic algorithms /". Linz : Trauner, 2005. http://aleph.unisg.ch/hsgscan/hm00116856.pdf.
Texto completo da fonteCole, Rowena Marie. "Clustering with genetic algorithms". University of Western Australia. Dept. of Computer Science, 1998. http://theses.library.uwa.edu.au/adt-WU2003.0008.
Texto completo da fonteLapthorn, Barry Thomas. "Helioseismology and genetic algorithms". Thesis, Queen Mary, University of London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271261.
Texto completo da fonteDelman, Bethany. "Genetic algorithms in cryptography /". Link to online version, 2003. https://ritdml.rit.edu/dspace/handle/1850/263.
Texto completo da fonteKrüger, Franz David, e Mohamad Nabeel. "Hyperparameter Tuning Using Genetic Algorithms : A study of genetic algorithms impact and performance for optimization of ML algorithms". Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-42404.
Texto completo da fonteAs machine learning (ML) is being more and more frequent in the business world, information gathering through Data mining (DM) is on the rise, and DM-practitioners are generally using several thumb rules to avoid having to spend a decent amount of time to tune the hyperparameters (parameters that control the learning process) of an ML algorithm to gain a high accuracy score. The proposal in this report is to conduct an approach that systematically optimizes the ML algorithms using genetic algorithms (GA) and to evaluate if and how the model should be constructed to find global solutions for a specific data set. By implementing a GA approach on two ML-algorithms, K-nearest neighbors, and Random Forest, on two numerical data sets, Iris data set and Wisconsin breast cancer data set, the model is evaluated by its accuracy scores as well as the computational time which then is compared towards a search method, specifically exhaustive search. The results have shown that it is assumed that GA works well in finding great accuracy scores in a reasonable amount of time. There are some limitations as the parameter’s significance towards an ML algorithm may vary.
Yan, Ping. "Theory of simple genetic algorithms". Thesis, University of Macau, 2000. http://umaclib3.umac.mo/record=b1446649.
Texto completo da fonteLivros sobre o assunto "Genetic algorithms"
Man, K. F., K. S. Tang e S. Kwong. Genetic Algorithms. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0577-0.
Texto completo da fonte1942-, Buckles Bill P., e Petry Fred, eds. Genetic algorithms. Los Alamitos, Calif: IEEE Computer Society Press, 1986.
Encontre o texto completo da fonteAnup, Kumar, e Gupta Yash P, eds. Genetic algorithms. Oxford: Pergamon, 1995.
Encontre o texto completo da fonteDr, Herrera Francisco, e Verdegay José-Luis, eds. Genetic algorithms and soft computing. Heidelberg: Physica-Verlag, 1996.
Encontre o texto completo da fonteLuque, Gabriel, e Enrique Alba. Parallel Genetic Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22084-5.
Texto completo da fonteMutingi, Michael, e Charles Mbohwa. Grouping Genetic Algorithms. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44394-2.
Texto completo da fonteE, Haupt S., ed. Practical genetic algorithms. 2a ed. Hoboken, N.J: John Wiley, 2004.
Encontre o texto completo da fonteE, Haupt S., ed. Practical genetic algorithms. New York: Wiley, 1998.
Encontre o texto completo da fonteLance, Chambers, ed. The practical handbook of genetic algorithms: Applications. 2a ed. Boca Raton, Fla: Chapman & Hall/CRC, 2001.
Encontre o texto completo da fonteLance, Chambers, ed. Practical handbook of genetic algorithms. Boca Raton: CRC Press, 1995.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Genetic algorithms"
Hardy, Yorick, e Willi-Hans Steeb. "Genetic Algorithms". In Classical and Quantum Computing, 313–400. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8366-5_15.
Texto completo da fonteDu, Ke-Lin, e M. N. S. Swamy. "Genetic Algorithms". In Search and Optimization by Metaheuristics, 37–69. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41192-7_3.
Texto completo da fonteSastry, Kumara, David E. Goldberg e Graham Kendall. "Genetic Algorithms". In Search Methodologies, 93–117. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-6940-7_4.
Texto completo da fonteRathore, Heena. "Genetic Algorithms". In Mapping Biological Systems to Network Systems, 97–106. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29782-8_8.
Texto completo da fonteAnsari, Nirwan, e Edwin Hou. "Genetic Algorithms". In Computational Intelligence for Optimization, 83–97. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6331-0_6.
Texto completo da fonteRowe, Jonathan E. "Genetic Algorithms". In Springer Handbook of Computational Intelligence, 825–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-43505-2_42.
Texto completo da fonteReeves, Colin R. "Genetic Algorithms". In Handbook of Metaheuristics, 109–39. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-1665-5_5.
Texto completo da fonteDracopoulos, Dimitris C. "Genetic Algorithms". In Perspectives in Neural Computing, 111–31. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-0903-7_7.
Texto completo da fonteKingdon, Jason. "Genetic Algorithms". In Perspectives in Neural Computing, 55–80. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-0949-5_4.
Texto completo da fonteDawid, Herbert. "Genetic Algorithms". In Lecture Notes in Economics and Mathematical Systems, 37–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-00211-7_3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Genetic algorithms"
Skomorokhov, Alexander O. "Genetic algorithms". In the conference. New York, New York, USA: ACM Press, 1996. http://dx.doi.org/10.1145/253341.253399.
Texto completo da fonteAlfonseca, Manuel. "Genetic algorithms". In the international conference. New York, New York, USA: ACM Press, 1991. http://dx.doi.org/10.1145/114054.114056.
Texto completo da fonteButt, Fouad, e Abdolreza Abhari. "Genetic algorithms". In the 2010 Spring Simulation Multiconference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1878537.1878779.
Texto completo da fontePandey, Hari Mohan, Anurag Dixit e Deepti Mehrotra. "Genetic algorithms". In the CUBE International Information Technology Conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2381716.2381766.
Texto completo da fonteChapman, Colin D., Kazuhiro Saitou e Mark J. Jakiela. "Genetic Algorithms As an Approach to Configuration and Topology Design". In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0338.
Texto completo da fonteCarlson, Susan E., Michael Ingrim e Ronald Shonkwiler. "Component Selection Using Genetic Algorithms". In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0336.
Texto completo da fonteJesus, Alexandre D., Arnaud Liefooghe, Bilel Derbel e Luís Paquete. "Algorithm selection of anytime algorithms". In GECCO '20: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3377930.3390185.
Texto completo da fonteLadkany, George S., e Mohamed B. Trabia. "Incorporating Twinkling in Genetic Algorithms for Global Optimization". In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49256.
Texto completo da fonteMisir, Mustafa, Stephanus Daniel Handoko e Hoong Chuin Lau. "Building algorithm portfolios for memetic algorithms". In GECCO '14: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2598394.2598455.
Texto completo da fonteAlba, Enrique. "Cellular genetic algorithms". In GECCO '14: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2598394.2605356.
Texto completo da fonteRelatórios de organizações sobre o assunto "Genetic algorithms"
Arthur, Jennifer Ann. Genetic Algorithms. Office of Scientific and Technical Information (OSTI), agosto de 2017. http://dx.doi.org/10.2172/1375151.
Texto completo da fonteSharp, David H., John Reinitz e Eric Mjolsness. Genetic Algorithms for Genetic Neural Nets. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1991. http://dx.doi.org/10.21236/ada256223.
Texto completo da fonteKargupta, H. Messy genetic algorithms: Recent developments. Office of Scientific and Technical Information (OSTI), setembro de 1996. http://dx.doi.org/10.2172/378868.
Texto completo da fonteMessa, K., e M. Lybanon. Curve Fitting Using Genetic Algorithms. Fort Belvoir, VA: Defense Technical Information Center, outubro de 1991. http://dx.doi.org/10.21236/ada247206.
Texto completo da fonteThomas, E. V. Frequency selection using genetic algorithms. Office of Scientific and Technical Information (OSTI), maio de 1993. http://dx.doi.org/10.2172/10177075.
Texto completo da fonteVlek, R. J., e D. J. M. Willems. Recipe reconstruction with genetic algorithms. Wageningen: Wageningen Food & Biobased Research, 2021. http://dx.doi.org/10.18174/540621.
Texto completo da fonteCobb, Helen G., e John J. Grefenstette. Genetic Algorithms for Tracking Changing Environments. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1993. http://dx.doi.org/10.21236/ada294075.
Texto completo da fontePittman, Jennifer, e C. A. Murthy. Optimal Line Fitting Using Genetic Algorithms. Fort Belvoir, VA: Defense Technical Information Center, julho de 1997. http://dx.doi.org/10.21236/ada328266.
Texto completo da fonteGoldberg, David. Competent Probabilistic Model Building Genetic Algorithms. Fort Belvoir, VA: Defense Technical Information Center, julho de 2003. http://dx.doi.org/10.21236/ada416564.
Texto completo da fonteVemuri, V. R. Genetic algorithms at UC Davis/LLNL. Office of Scientific and Technical Information (OSTI), dezembro de 1993. http://dx.doi.org/10.2172/10122640.
Texto completo da fonte