Literatura científica selecionada sobre o tema "Generalized Feynman-Kac formula"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Generalized Feynman-Kac formula".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Generalized Feynman-Kac formula"
CHEN, CHUAN-ZHONG, ZHI-MING MA e WEI SUN. "ON GIRSANOV AND GENERALIZED FEYNMAN–KAC TRANSFORMATIONS FOR SYMMETRIC MARKOV PROCESSES". Infinite Dimensional Analysis, Quantum Probability and Related Topics 10, n.º 02 (junho de 2007): 141–63. http://dx.doi.org/10.1142/s0219025707002671.
Texto completo da fonteOUERDIANE, HABIB, e JOSÉ LUIS SILVA. "GENERALIZED FEYNMAN–KAC FORMULA WITH STOCHASTIC POTENTIAL". Infinite Dimensional Analysis, Quantum Probability and Related Topics 05, n.º 02 (junho de 2002): 243–55. http://dx.doi.org/10.1142/s0219025702000808.
Texto completo da fonteEttaieb, Aymen, Narjess Turki Khalifa e Habib Ouerdiane. "Quantum white noise Feynman–Kac formula". Random Operators and Stochastic Equations 26, n.º 2 (1 de junho de 2018): 75–87. http://dx.doi.org/10.1515/rose-2018-0007.
Texto completo da fonteHerzog, Bodo. "Adopting Feynman–Kac Formula in Stochastic Differential Equations with (Sub-)Fractional Brownian Motion". Mathematics 10, n.º 3 (23 de janeiro de 2022): 340. http://dx.doi.org/10.3390/math10030340.
Texto completo da fontePardoux, Etienne, e Aurel Răşcanu. "Continuity of the Feynman–Kac formula for a generalized parabolic equation". Stochastics 89, n.º 5 (16 de janeiro de 2017): 726–52. http://dx.doi.org/10.1080/17442508.2016.1276911.
Texto completo da fonteHIROSHIMA, FUMIO, TAKASHI ICHINOSE e JÓZSEF LŐRINCZI. "PATH INTEGRAL REPRESENTATION FOR SCHRÖDINGER OPERATORS WITH BERNSTEIN FUNCTIONS OF THE LAPLACIAN". Reviews in Mathematical Physics 24, n.º 06 (17 de junho de 2012): 1250013. http://dx.doi.org/10.1142/s0129055x12500134.
Texto completo da fonteSun, Hui, e Yangyang Lyu. "Temporal Hölder continuity of the parabolic Anderson model driven by a class of time-independent Gaussian fields with rough initial conditions". AIMS Mathematics 9, n.º 12 (2024): 34838–62. https://doi.org/10.3934/math.20241659.
Texto completo da fonteCaffarel, Michel, e Pierre Claverie. "Treatment of the Schrödinger equation through a Monte Carlo method based upon the generalized Feynman-Kac formula". Journal of Statistical Physics 43, n.º 5-6 (junho de 1986): 797–801. http://dx.doi.org/10.1007/bf02628305.
Texto completo da fonteCaffarel, Michel, e Pierre Claverie. "Development of a pure diffusion quantum Monte Carlo method using a full generalized Feynman–Kac formula. I. Formalism". Journal of Chemical Physics 88, n.º 2 (15 de janeiro de 1988): 1088–99. http://dx.doi.org/10.1063/1.454227.
Texto completo da fonteCaffarel, Michel, e Pierre Claverie. "Development of a pure diffusion quantum Monte Carlo method using a full generalized Feynman–Kac formula. II. Applications to simple systems". Journal of Chemical Physics 88, n.º 2 (15 de janeiro de 1988): 1100–1109. http://dx.doi.org/10.1063/1.454228.
Texto completo da fonteTeses / dissertações sobre o assunto "Generalized Feynman-Kac formula"
OBERPRILLER, KATHARINA. "Reduced-form framework under model uncertainty and generalized Feynman-Kac formula in the G-setting". Doctoral thesis, Gran Sasso Science Institute, 2022. http://hdl.handle.net/20.500.12571/25844.
Texto completo da fonteBär, Christian. "Renormalized integrals and a path integral formula for the heat kernel on a manifold". Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2012/6005/.
Texto completo da fonteOuknine, Anas. "Μοdèles affines généralisées et symétries d'équatiοns aux dérivés partielles". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR085.
Texto completo da fonteThis thesis is dedicated to studying the Lie symmetries of a particular class of partialdifferential equations (PDEs), known as the backward Kolmogorov equation. This equa-tion plays a crucial role in financial modeling, particularly in relation to the Longstaff-Schwartz model, which is widely used for pricing options and derivatives.In a broader context, our study focuses on analyzing the Lie symmetries of thebackward Kolmogorov equation by introducing a nonlinear term. This generalization issignificant, as the modified equation is linked to a forward backward stochastic differ-ential equation (FBSDE) through the generalized (nonlinear) Feynman-Kac formula.We also examine the symmetries of this stochastic equation and how the symmetriesof the PDE are connected to those of the BSDE.Finally, we propose a recalculation of the symmetries of the BSDE and FBSDE,adopting a new approach. This approach is distinguished by the fact that the symme-try group acting on time itself depends also on the process Y , which is the solutionof the BSDE. This dependence opens up new perspectives on the interaction betweentemporal symmetries and the solutions of the equations
Capítulos de livros sobre o assunto "Generalized Feynman-Kac formula"
Benth, Fred Espen. "A Generalized Feynman-Kac Formula for the Stochastic Heat Problem with Anticipating Initial Conditions". In Stochastic Analysis and Related Topics V, 121–33. Boston, MA: Birkhäuser Boston, 1996. http://dx.doi.org/10.1007/978-1-4612-2450-1_6.
Texto completo da fonteCaffarel, M., e P. Claverie. "Development of a pure diffusion quantum Monte Carlo method using a full generalized Feynman-Kac formula. I and II". In Quantum Monte Carlo, 52. Oxford University PressNew York, NY, 2007. http://dx.doi.org/10.1093/oso/9780195310108.003.0055.
Texto completo da fonte