Artigos de revistas sobre o tema "Generalised Maxwell Model"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Generalised Maxwell Model".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Karner, Timi, Rok Belšak e Janez Gotlih. "Using a Fully Fractional Generalised Maxwell Model for Describing the Time Dependent Sinusoidal Creep of a Dielectric Elastomer Actuator". Fractal and Fractional 6, n.º 12 (4 de dezembro de 2022): 720. http://dx.doi.org/10.3390/fractalfract6120720.
Texto completo da fonteFabris, Júlio C. "Cosmological model from generalised Maxwell-Einstein system in higher dimensions". Physics Letters B 267, n.º 1 (setembro de 1991): 30–32. http://dx.doi.org/10.1016/0370-2693(91)90519-v.
Texto completo da fonteZhao, Yanqing, Yuanbao Ni e Weiqiao Zeng. "A consistent approach for characterising asphalt concrete based on generalised Maxwell or Kelvin model". Road Materials and Pavement Design 15, n.º 3 (26 de fevereiro de 2014): 674–90. http://dx.doi.org/10.1080/14680629.2014.889030.
Texto completo da fonteLiu, Zizhen, e Lynne Bilston. "On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour". Biorheology: The Official Journal of the International Society of Biorheology 37, n.º 3 (maio de 2000): 191–201. http://dx.doi.org/10.1177/0006355x2000037003002.
Texto completo da fonteLong, Le Dinh, Bahman Moradi, Omid Nikan, Zakieh Avazzadeh e António M. Lopes. "Numerical Approximation of the Fractional Rayleigh–Stokes Problem Arising in a Generalised Maxwell Fluid". Fractal and Fractional 6, n.º 7 (2 de julho de 2022): 377. http://dx.doi.org/10.3390/fractalfract6070377.
Texto completo da fonteYang, X. S. "Nonlinear viscoelastic compaction in sedimentary basins". Nonlinear Processes in Geophysics 7, n.º 1/2 (30 de junho de 2000): 1–8. http://dx.doi.org/10.5194/npg-7-1-2000.
Texto completo da fonteSchiffmann, Kirsten Ingolf. "Nanoindentation creep and stress relaxation tests of polycarbonate: Analysis of viscoelastic properties by different rheological models". International Journal of Materials Research 97, n.º 9 (1 de setembro de 2006): 1199–211. http://dx.doi.org/10.1515/ijmr-2006-0189.
Texto completo da fonteNaveena Kumara, A., Shreyas Punacha e Md Sabir Ali. "Lyapunov exponents and phase structure of Lifshitz and hyperscaling violating black holes". Journal of Cosmology and Astroparticle Physics 2024, n.º 07 (1 de julho de 2024): 061. http://dx.doi.org/10.1088/1475-7516/2024/07/061.
Texto completo da fonteGerritzen, Johannes, Michael Müller-Pabel, Jonas Müller, Benjamin Gröger, Niklas Lorenz, Christian Hopmann e Maik Gude. "Development of a High-Fidelity Framework to Describe the Process-Dependent Viscoelasticity of a Fast-Curing Epoxy Matrix Resin including Testing, Modelling, Calibration and Validation". Polymers 14, n.º 17 (2 de setembro de 2022): 3647. http://dx.doi.org/10.3390/polym14173647.
Texto completo da fonteParodi, Pietro, e Peter Watson. "PROPERTY GRAPHS – A STATISTICAL MODEL FOR FIRE AND EXPLOSION LOSSES BASED ON GRAPH THEORY". ASTIN Bulletin 49, n.º 2 (27 de março de 2019): 263–97. http://dx.doi.org/10.1017/asb.2019.4.
Texto completo da fonteCâmara, Gustavo, Rui Micaelo, Nuno Monteiro Azevedo e Hugo Silva. "Incremental Viscoelastic Damage Contact Models for Asphalt Mixture Fracture Assessment". Infrastructures 9, n.º 7 (22 de julho de 2024): 118. http://dx.doi.org/10.3390/infrastructures9070118.
Texto completo da fonteCastro-Palacio, Juan Carlos, J. M. Isidro, Esperanza Navarro-Pardo, Luisberis Velázquez-Abad e Pedro Fernández-de-Córdoba. "Monte Carlo Simulation of a Modified Chi Distribution with Unequal Variances in the Generating Gaussians. A Discrete Methodology to Study Collective Response Times". Mathematics 9, n.º 1 (31 de dezembro de 2020): 77. http://dx.doi.org/10.3390/math9010077.
Texto completo da fonteZHU, ChangSheng, HaiJun ZHANG, Qin YANG e ZhiXian ZHONG. "Generalized maxwell velocity slip boundary model". SCIENTIA SINICA Physica, Mechanica & Astronomica 43, n.º 5 (1 de maio de 2013): 662–69. http://dx.doi.org/10.1360/132011-827.
Texto completo da fonteHu, H. "On the Nonlinear Generalized Maxwell Fluid Model". Journal of Applied Mechanics 70, n.º 2 (1 de março de 2003): 309–10. http://dx.doi.org/10.1115/1.1544538.
Texto completo da fonteWang, Ping, Jin-Ling Liu e Fang Wang. "The first solution for the helical flows of generalized Maxwell fluid with longitudinal time dependent shear stresses on the boundary". Thermal Science 26, n.º 2 Part A (2022): 1113–21. http://dx.doi.org/10.2298/tsci2202113w.
Texto completo da fonteRehman, Aziz Ur, Fahd Jarad, Muhammad Bilal Riaz e Zaheer Hussain Shah. "Generalized Mittag-Leffler Kernel Form Solutions of Free Convection Heat and Mass Transfer Flow of Maxwell Fluid with Newtonian Heating: Prabhakar Fractional Derivative Approach". Fractal and Fractional 6, n.º 2 (10 de fevereiro de 2022): 98. http://dx.doi.org/10.3390/fractalfract6020098.
Texto completo da fonteNguyen, ST, M.-H. Vu, MN Vu e TN Nguyen. "Generalized Maxwell model for micro-cracked viscoelastic materials". International Journal of Damage Mechanics 26, n.º 5 (7 de outubro de 2015): 697–710. http://dx.doi.org/10.1177/1056789515608231.
Texto completo da fonteHess, Siegfried, Bastian Arlt, Sebastian eidenreich, Patrick Ilg, Chris Goddard e Ortwin Hess. "Flow Properties Inferred from Generalized Maxwell Models". Zeitschrift für Naturforschung A 64, n.º 1-2 (1 de fevereiro de 2009): 81–95. http://dx.doi.org/10.1515/zna-2009-1-213.
Texto completo da fonteXiao, Rui, Hongguang Sun e Wen Chen. "An equivalence between generalized Maxwell model and fractional Zener model". Mechanics of Materials 100 (setembro de 2016): 148–53. http://dx.doi.org/10.1016/j.mechmat.2016.06.016.
Texto completo da fonteYenilmez, Bekir, Baris Caglar e E. Murat Sozer. "Viscoelastic modeling of fiber preform compaction in vacuum infusion process". Journal of Composite Materials 51, n.º 30 (27 de março de 2017): 4189–203. http://dx.doi.org/10.1177/0021998317699983.
Texto completo da fonteZhang, Chao, Jinhao Qiu, Yuansheng Chen e Hongli Ji. "Modeling hysteresis and creep behavior of macrofiber composite–based piezoelectric bimorph actuator". Journal of Intelligent Material Systems and Structures 24, n.º 3 (21 de setembro de 2012): 369–77. http://dx.doi.org/10.1177/1045389x12460337.
Texto completo da fonteCheng, Gang, Jean Claude Gelin e Thierry Barrière. "Physical Modelling and Identification of Polymer Viscoelastic Behaviour above Glass Transition Temperature and Application to the Numerical Simulation of the Hot Embossing Process". Key Engineering Materials 554-557 (junho de 2013): 1763–76. http://dx.doi.org/10.4028/www.scientific.net/kem.554-557.1763.
Texto completo da fonteGuemmadi, M., e A. Ouibrahim. "Generalized Maxwell Model as Viscoelastic Lubricant in Journal Bearing". Key Engineering Materials 478 (abril de 2011): 64–69. http://dx.doi.org/10.4028/www.scientific.net/kem.478.64.
Texto completo da fonteKapteijn, F., J. A. Moulijn e R. Krishna. "The generalized Maxwell–Stefan model for diffusion in zeolites:". Chemical Engineering Science 55, n.º 15 (agosto de 2000): 2923–30. http://dx.doi.org/10.1016/s0009-2509(99)00564-3.
Texto completo da fonteCorr, D. T., M. J. Starr, R. Vanderby, e T. M. Best. "A Nonlinear Generalized Maxwell Fluid Model for Viscoelastic Materials". Journal of Applied Mechanics 68, n.º 5 (26 de abril de 2001): 787–90. http://dx.doi.org/10.1115/1.1388615.
Texto completo da fonteLuo, Dan, e Hong-Shan Chen. "A new generalized fractional Maxwell model of dielectric relaxation". Chinese Journal of Physics 55, n.º 5 (outubro de 2017): 1998–2004. http://dx.doi.org/10.1016/j.cjph.2017.08.020.
Texto completo da fontePetera, Jerzy, Kamil Kaminski e Monika Kotynia. "A generalized viscoelastic Maxwell model for semisolid thixotropic alloys." International Journal of Material Forming 3, S1 (abril de 2010): 775–78. http://dx.doi.org/10.1007/s12289-010-0885-y.
Texto completo da fonteOrekhov, A. A., L. N. Rabinskiy e G. V. Fedotenkov. "Fundamental Solutions of the Equations of Classical and Generalized Heat Conduction Models". Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki 165, n.º 4 (18 de fevereiro de 2024): 404–14. http://dx.doi.org/10.26907/2541-7746.2023.4.404-414.
Texto completo da fonteKryvko, Andriy, Claudia del C. Gutiérrez-Torres, José Alfredo Jiménez-Bernal, Orlando Susarrey-Huerta, Eduardo Reyes de Luna e Didier Samayoa. "Fractal Continuum Maxwell Creep Model". Axioms 14, n.º 1 (2 de janeiro de 2025): 33. https://doi.org/10.3390/axioms14010033.
Texto completo da fonteWang, Zhao Jing, Ling Luo, Yu Xi Jia, Jun Peng Gao e Xiao Su Yi. "Predicting Polyurethane Shape Memory Behaviors in Stress-Controlled Situations Using a Viscoelastic Model". Key Engineering Materials 575-576 (setembro de 2013): 101–6. http://dx.doi.org/10.4028/www.scientific.net/kem.575-576.101.
Texto completo da fonteBách, Phạm Tiến, Võ Đại Nhật, Nguyễn Việt Kỳ e Lê Quân. "Maxwell model geotextile encased stone column in soft soil improvement". Science & Technology Development Journal - Engineering and Technology 4, n.º 1 (9 de abril de 2021): first. http://dx.doi.org/10.32508/stdjet.v4i1.772.
Texto completo da fonteBANERJEE, N., e R. BANERJEE. "GENERALIZED HAMILTONIAN EMBEDDING OF THE PROCA MODEL". Modern Physics Letters A 11, n.º 24 (10 de agosto de 1996): 1919–27. http://dx.doi.org/10.1142/s0217732396001922.
Texto completo da fonteBrandt, F. T., J. Frenkel e D. G. C. McKeon. "Dual symmetry in a generalized Maxwell theory". Modern Physics Letters A 31, n.º 32 (5 de outubro de 2016): 1650184. http://dx.doi.org/10.1142/s0217732316501844.
Texto completo da fonteKibaroğlu, Salih, Oktay Cebecioğlu e Ahmet Saban. "Gauging the Maxwell Extended GLn,R and SLn+1,R Algebras". Symmetry 15, n.º 2 (9 de fevereiro de 2023): 464. http://dx.doi.org/10.3390/sym15020464.
Texto completo da fonteBasagiannis, Christos A., e Martin S. Williams. "Modified Generalized Maxwell Model for Hysteresis Behavior of Elastomeric Dampers". Journal of Engineering Mechanics 146, n.º 8 (agosto de 2020): 04020083. http://dx.doi.org/10.1061/(asce)em.1943-7889.0001801.
Texto completo da fonteWang, Fan, Wang-Cheng Shen, Jin-Ling Liu e Ping Wang. "The analytic solutions for the unsteady rotating flows of the generalized Maxwell fluid between coaxial cylinders". Thermal Science 24, n.º 6 Part B (2020): 4041–48. http://dx.doi.org/10.2298/tsci2006041w.
Texto completo da fonteStropek, Zbigniew, Zbigniew Stropek, Krzysztof Golacki e Krzysztof Golacki. "Stress Relaxation of Apples at Different Deformation Velocities and Temperatures". Transactions of the ASABE 62, n.º 1 (2019): 115–21. http://dx.doi.org/10.13031/trans.12993.
Texto completo da fonteMontenegro, David, e B. M. Pimentel. "Planar generalized electrodynamics for one-loop amplitude in the Heisenberg picture". International Journal of Modern Physics A 36, n.º 19 (5 de julho de 2021): 2150142. http://dx.doi.org/10.1142/s0217751x21501426.
Texto completo da fonteXue, Changfeng, e Junxiang Nie. "Exact Solutions of Rayleigh-Stokes Problem for Heated Generalized Maxwell Fluid in a Porous Half-Space". Mathematical Problems in Engineering 2008 (2008): 1–10. http://dx.doi.org/10.1155/2008/641431.
Texto completo da fonteAl-Bender, F., V. Lampaert e J. Swevers. "The generalized Maxwell-slip model: a novel model for friction Simulation and compensation". IEEE Transactions on Automatic Control 50, n.º 11 (novembro de 2005): 1883–87. http://dx.doi.org/10.1109/tac.2005.858676.
Texto completo da fonteHu Jun, 胡军, 许凯乐 Xu Kaile, 马壮壮 Ma Zhuangzhuang e 马强 Ma Qiang. "Simulation Analysis of Aspherical Lens Molding Based on Generalized Maxwell Model". Laser & Optoelectronics Progress 57, n.º 9 (2020): 092201. http://dx.doi.org/10.3788/lop57.092201.
Texto completo da fonteNguyen, TuanDung, Jin Li, Lijie Sun, DanhQuang Tran e Fuzhen Xuan. "Viscoelasticity Modeling of Dielectric Elastomers by Kelvin Voigt-Generalized Maxwell Model". Polymers 13, n.º 13 (2 de julho de 2021): 2203. http://dx.doi.org/10.3390/polym13132203.
Texto completo da fonteKamenar, Ervin, e Saša Zelenika. "Issues in validation of pre-sliding friction models for ultra-high precision positioning". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, n.º 3 (14 de fevereiro de 2018): 997–1006. http://dx.doi.org/10.1177/0954406218758797.
Texto completo da fonteIKEDA, Kohsuke, Ryo OMURA, Toshikatsu NOHARA, Kazunori KUGA, Ryoji OKABE, Satoshi ISHIKAWA e Masaki FUJIKAWA. "Applicability of Generalized Maxwell Model to Creep Deformation Behavior of Thermoplastics". Proceedings of Mechanical Engineering Congress, Japan 2021 (2021): J122–18. http://dx.doi.org/10.1299/jsmemecj.2021.j122-18.
Texto completo da fonteNiekamp, R., E. Stein e A. Idesman. "Finite elements in space and time for generalized viscoelastic maxwell model". Computational Mechanics 27, n.º 1 (29 de janeiro de 2001): 49–60. http://dx.doi.org/10.1007/s004660000213.
Texto completo da fonteFrancis, Royce A., Srinivas Reddy Geedipally, Seth D. Guikema, Soma Sekhar Dhavala, Dominique Lord e Sarah LaRocca. "Characterizing the Performance of the Conway-Maxwell Poisson Generalized Linear Model". Risk Analysis 32, n.º 1 (30 de julho de 2011): 167–83. http://dx.doi.org/10.1111/j.1539-6924.2011.01659.x.
Texto completo da fonteLi, Chuangdi, Xuefeng Yang, Yuxiang Li e Xinguang Ge. "Wind vibration responses of structure with generalized Maxwell model viscoelastic dampers". Structures 47 (janeiro de 2023): 425–33. http://dx.doi.org/10.1016/j.istruc.2022.10.127.
Texto completo da fonteCao, Limei, Cong Li, Botong Li, Xinhui Si e Jing Zhu. "Electro-osmotic flow of generalized Maxwell fluids in triangular microchannels based on distributed order time fractional constitutive model". AIP Advances 13, n.º 2 (1 de fevereiro de 2023): 025146. http://dx.doi.org/10.1063/5.0138004.
Texto completo da fonteFrolova, A. A. "Numerical Comparison of the Generalized Maxwell and Cercignani–Lampis Models". Computational Mathematics and Mathematical Physics 60, n.º 12 (dezembro de 2020): 2094–107. http://dx.doi.org/10.1134/s0965542520120040.
Texto completo da fonteJalocha, D., A. Constantinescu e R. Neviere. "Revisiting the identification of generalized Maxwell models from experimental results". International Journal of Solids and Structures 67-68 (agosto de 2015): 169–81. http://dx.doi.org/10.1016/j.ijsolstr.2015.04.018.
Texto completo da fonte