Artigos de revistas sobre o tema "Gels and Hydrogels"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Gels and Hydrogels".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Xu, Bo, Yuwei Liu, Lanlan Wang, Xiaodong Ge, Min Fu, Ping Wang e Qiang Wang. "High-Strength Nanocomposite Hydrogels with Swelling-Resistant and Anti-Dehydration Properties". Polymers 10, n.º 9 (14 de setembro de 2018): 1025. http://dx.doi.org/10.3390/polym10091025.
Texto completo da fonteBurchak, Vadym, Fritz Koch, Leonard Siebler, Sonja Haase, Verena K. Horner, Xenia Kempter, G. Björn Stark et al. "Evaluation of a Novel Thiol–Norbornene-Functionalized Gelatin Hydrogel for Bioprinting of Mesenchymal Stem Cells". International Journal of Molecular Sciences 23, n.º 14 (19 de julho de 2022): 7939. http://dx.doi.org/10.3390/ijms23147939.
Texto completo da fonteNaficy, Sina, Hugh R. Brown, Joselito M. Razal, Geoffrey M. Spinks e Philip G. Whitten. "Progress Toward Robust Polymer Hydrogels". Australian Journal of Chemistry 64, n.º 8 (2011): 1007. http://dx.doi.org/10.1071/ch11156.
Texto completo da fonteBhuyan, Md Murshed, e Jae-Ho Jeong. "Gels/Hydrogels in Different Devices/Instruments—A Review". Gels 10, n.º 9 (23 de agosto de 2024): 548. http://dx.doi.org/10.3390/gels10090548.
Texto completo da fonteShoukat, Hina, Fahad Pervaiz e Sobia Noreen. "Novel Crosslinking Methods to Design Hydrogels". Global Pharmaceutical Sciences Review I, n.º I (30 de dezembro de 2016): 1–5. http://dx.doi.org/10.31703/gpsr.2016(i-i).01.
Texto completo da fonteLi, Peng, Nam Hoon Kim, Sambhu Bhadra e Joong Hee Lee. "Electroresponsive Property of Novel Poly(acrylate- acryloyloxyethyl trimethyl ammonium chloride)/Clay Nanocomposite Hydrogels". Advanced Materials Research 79-82 (agosto de 2009): 2263–66. http://dx.doi.org/10.4028/www.scientific.net/amr.79-82.2263.
Texto completo da fonteGorantla, Srividya, Tejashree Waghule, Vamshi Krishna Rapalli, Prem Prakash Singh, Sunil Kumar Dubey, Ranendra Narayan Saha e Gautam Singhvi. "Advanced Hydrogels Based Drug Delivery Systems for Ophthalmic Delivery". Recent Patents on Drug Delivery & Formulation 13, n.º 4 (29 de abril de 2020): 291–300. http://dx.doi.org/10.2174/1872211314666200108094851.
Texto completo da fonteO’Connor, Naphtali A., Abdulhaq Syed, Madeline Wong, Josiah Hicks, Greisly Nunez, Andrei Jitianu, Zach Siler e Marnie Peterson. "Polydopamine Antioxidant Hydrogels for Wound Healing Applications". Gels 6, n.º 4 (31 de outubro de 2020): 39. http://dx.doi.org/10.3390/gels6040039.
Texto completo da fonteFallon, Halligan, Pezzoli, Geever e Higginbotham. "Synthesis and Characterisation of Novel Temperature and pH Sensitive Physically Cross-Linked Poly (N-vinylcaprolactam-co-itaconic Acid) Hydrogels for Drug Delivery". Gels 5, n.º 3 (29 de agosto de 2019): 41. http://dx.doi.org/10.3390/gels5030041.
Texto completo da fonteSeida, Yoshimi, e Hideaki Tokuyama. "Hydrogel Adsorbents for the Removal of Hazardous Pollutants—Requirements and Available Functions as Adsorbent". Gels 8, n.º 4 (3 de abril de 2022): 220. http://dx.doi.org/10.3390/gels8040220.
Texto completo da fonteKaberova, Zhansaya, Evgeny Karpushkin, Martina Nevoralová, Miroslav Vetrík, Miroslav Šlouf e Miroslava Dušková-Smrčková. "Microscopic Structure of Swollen Hydrogels by Scanning Electron and Light Microscopies: Artifacts and Reality". Polymers 12, n.º 3 (5 de março de 2020): 578. http://dx.doi.org/10.3390/polym12030578.
Texto completo da fonteFeng, Huanhuan, Tingting Zheng, Xuezhen Wang e Huiliang Wang. "Poly(acrylamide)-MWNTs hybrid hydrogel with extremely high mechanical strength". Open Chemistry 14, n.º 1 (1 de janeiro de 2016): 150–57. http://dx.doi.org/10.1515/chem-2016-0017.
Texto completo da fonteChen, Miao, Weimin Lin, Le Hong, Ning Ji e Hang Zhao. "The Development and Lifetime Stability Improvement of Guanosine-Based Supramolecular Hydrogels through Optimized Structure". BioMed Research International 2019 (13 de junho de 2019): 1–18. http://dx.doi.org/10.1155/2019/6258248.
Texto completo da fonteSun, Hong, Tao Wu, Yong Qiang He, Qiao Juan Gong, Jian Ping Gao e Yu Liu. "Fabrication of Stable PVA/PVP Hydrogels". Advanced Materials Research 815 (outubro de 2013): 321–24. http://dx.doi.org/10.4028/www.scientific.net/amr.815.321.
Texto completo da fonteCui, Wei, Ting Li, Hang Li, Le Min Zhu, Huan Liu e Rong Ran. "Investigation of Mechanical Properties and Dye Adsorption Capacities of Novel Hydrophobic Association Nanocomposite Hydrogels". Materials Science Forum 815 (março de 2015): 568–75. http://dx.doi.org/10.4028/www.scientific.net/msf.815.568.
Texto completo da fonteSingh, Aditya Narayan, Abhishek Meena e Kyung-Wan Nam. "Gels in Motion: Recent Advancements in Energy Applications". Gels 10, n.º 2 (2 de fevereiro de 2024): 122. http://dx.doi.org/10.3390/gels10020122.
Texto completo da fonteWu, Shuping, Chao Xu, Yiran Zhao, Weijian Shi, Hao Li, Jiawei Cai, Fuyuan Ding e Ping Qu. "Recent Advances in Chitosan-Based Hydrogels for Flexible Wearable Sensors". Chemosensors 11, n.º 1 (3 de janeiro de 2023): 39. http://dx.doi.org/10.3390/chemosensors11010039.
Texto completo da fonteFekete, Erika, e Emília Csiszár. "Chitosan–Alginate Gels for Sorption of Hazardous Materials: The Effect of Chemical Composition and Physical State". International Journal of Molecular Sciences 25, n.º 15 (1 de agosto de 2024): 8406. http://dx.doi.org/10.3390/ijms25158406.
Texto completo da fontePopeyko, O. V., e E. I. Istomina. "Preparation and Properties of Hydrogel Matrices based on Pectins from Callus Cultures". Biotekhnologiya 36, n.º 3 (2020): 63–72. http://dx.doi.org/10.21519/0234-2758-2020-36-3-63-72.
Texto completo da fonteChippada, Uday, Bernard Yurke e Noshir A. Langrana. "Simultaneous determination of Young's modulus, shear modulus, and Poisson's ratio of soft hydrogels". Journal of Materials Research 25, n.º 3 (março de 2010): 545–55. http://dx.doi.org/10.1557/jmr.2010.0067.
Texto completo da fonteSkopinska-Wisniewska, Joanna, Silvia De la Flor e Justyna Kozlowska. "From Supramolecular Hydrogels to Multifunctional Carriers for Biologically Active Substances". International Journal of Molecular Sciences 22, n.º 14 (9 de julho de 2021): 7402. http://dx.doi.org/10.3390/ijms22147402.
Texto completo da fonteMahmood, Ayaz, Dev Patel, Brandon Hickson, John DesRochers e Xiao Hu. "Recent Progress in Biopolymer-Based Hydrogel Materials for Biomedical Applications". International Journal of Molecular Sciences 23, n.º 3 (26 de janeiro de 2022): 1415. http://dx.doi.org/10.3390/ijms23031415.
Texto completo da fonteMarrale, Maurizio, e Francesco d’Errico. "Hydrogels for Three-Dimensional Ionizing-Radiation Dosimetry". Gels 7, n.º 2 (21 de junho de 2021): 74. http://dx.doi.org/10.3390/gels7020074.
Texto completo da fonteLiu, Chang, Naoya Morimoto, Lan Jiang, Sohei Kawahara, Takako Noritomi, Hideaki Yokoyama, Koichi Mayumi e Kohzo Ito. "Tough hydrogels with rapid self-reinforcement". Science 372, n.º 6546 (3 de junho de 2021): 1078–81. http://dx.doi.org/10.1126/science.aaz6694.
Texto completo da fonteArshad, Anam, Khadija Fakhar, Intsaf Usman Lodhi, Khadija Haroon e Rameen Khurram. "Gradient Gels: Exploring Diverse Starch Concentrations in Hydrogel Formulations". Summer 2023 VIII, n.º III (30 de outubro de 2022): 24–32. http://dx.doi.org/10.31703/gpsr.2023(viii-iii).03.
Texto completo da fonteChen, Yi, Yueyun Zhou, Wenyong Liu, Hejie Pi e Guangsheng Zeng. "POSS Hybrid Robust Biomass IPN Hydrogels with Temperature Responsiveness". Polymers 11, n.º 3 (20 de março de 2019): 524. http://dx.doi.org/10.3390/polym11030524.
Texto completo da fonteTokuyama, Hideaki. "Development of Emulsion Gels and Macroporous Hydrogels and their Applications to Metal Adsorption and Enzyme Reaction". Advanced Materials Research 1112 (julho de 2015): 141–44. http://dx.doi.org/10.4028/www.scientific.net/amr.1112.141.
Texto completo da fonteBhattacharya, Dipsikha, Lipika Ray, Panchanan Pramanik e Jitendra Kumar Pandey. "Recent Advances in Various Inorganic Nanoparticle Embedded Chitosan-based Multifunctional Materials for Wound Healing". Current Nanomedicine 13, n.º 2 (julho de 2023): 75–90. http://dx.doi.org/10.2174/2468187313666230816095330.
Texto completo da fonteGourdie, Robert G., Tereance A. Myers, Alex McFadden, Yin-xiong Li e Jay D. Potts. "Self-Organizing Tissue-Engineered Constructs in Collagen Hydrogels". Microscopy and Microanalysis 18, n.º 1 (4 de janeiro de 2012): 99–106. http://dx.doi.org/10.1017/s1431927611012372.
Texto completo da fonteDu, Yu Zhang, Dai Di Fan, Xiao Xuan Ma, Chen Hui Zhu e Li Jun Zhang. "Covalently Crosslinked Human-Like Collagen Hydrogel: Properties of Biocompatibility". Advanced Materials Research 550-553 (julho de 2012): 1114–19. http://dx.doi.org/10.4028/www.scientific.net/amr.550-553.1114.
Texto completo da fonteDannert, Corinna, Bjørn Torger Stokke e Rita S. Dias. "Nanoparticle-Hydrogel Composites: From Molecular Interactions to Macroscopic Behavior". Polymers 11, n.º 2 (6 de fevereiro de 2019): 275. http://dx.doi.org/10.3390/polym11020275.
Texto completo da fonteBrunette, Margaret, Hal Holmes, Michael G. Lancina, Weilue He, Bruce P. Lee, Megan C. Frost e Rupak M. Rajachar. "Inducible nitric oxide releasing poly-(ethylene glycol)-fibrinogen adhesive hydrogels for tissue regeneration". MRS Proceedings 1569 (2013): 39–44. http://dx.doi.org/10.1557/opl.2013.797.
Texto completo da fonteJoubert, Fanny, Peyton Cheong Phey Denn, Yujie Guo e George Pasparakis. "Comparison of Thermoresponsive Hydrogels Synthesized by Conventional Free Radical and RAFT Polymerization". Materials 12, n.º 17 (23 de agosto de 2019): 2697. http://dx.doi.org/10.3390/ma12172697.
Texto completo da fonteKamińska, Marta, Sławomir Kuberski, Waldemar Maniukiewicz, Piotr Owczarz, Piotr Komorowski, Zofia Modrzejewska e Bogdan Walkowiak. "Thermosensitive chitosan gels containing calcium glycerophosphate for bone cell culture". Journal of Bioactive and Compatible Polymers 32, n.º 2 (23 de novembro de 2016): 209–22. http://dx.doi.org/10.1177/0883911516671150.
Texto completo da fonteMohammed, Ali A., Siwei Li, Tian Sang, Julian R. Jones e Alessandra Pinna. "Nanocomposite Hydrogels with Polymer Grafted Silica Nanoparticles, Using Glucose Oxidase". Gels 9, n.º 6 (13 de junho de 2023): 486. http://dx.doi.org/10.3390/gels9060486.
Texto completo da fonteMin, Qing, Ronghua Tan, Yuchen Zhang, Congcong Wang, Ying Wan e Jing Li. "Multi-Crosslinked Strong and Elastic Bioglass/Chitosan-Cysteine Hydrogels with Controlled Quercetin Delivery for Bone Tissue Engineering". Pharmaceutics 14, n.º 10 (26 de setembro de 2022): 2048. http://dx.doi.org/10.3390/pharmaceutics14102048.
Texto completo da fonteBoffito, Monica, Rossella Laurano, Dimitra Giasafaki, Theodore Steriotis, Athanasios Papadopoulos, Chiara Tonda-Turo, Claudio Cassino, Georgia Charalambopoulou e Gianluca Ciardelli. "Embedding Ordered Mesoporous Carbons into Thermosensitive Hydrogels: A Cutting-Edge Strategy to Vehiculate a Cargo and Control Its Release Profile". Nanomaterials 10, n.º 11 (29 de outubro de 2020): 2165. http://dx.doi.org/10.3390/nano10112165.
Texto completo da fonteXiong, Shu Qiang, Yan Wang, Jing Zhu, Zu Ming Hu e Jun Rong Yu. "Polydopamine Nanoparticle for Poly(N-Isopropylacrylamide)-Based Nanocomposite Hydrogel with Good Free-Radical-Scavenging Property". Materials Science Forum 848 (março de 2016): 94–98. http://dx.doi.org/10.4028/www.scientific.net/msf.848.94.
Texto completo da fonteEmani, Sravani, Anil Vangala, Federico Buonocore, Niousha Yarandi e Gianpiero Calabrese. "Chitosan Hydrogels Cross-Linked with Trimesic Acid for the Delivery of 5-Fluorouracil in Cancer Therapy". Pharmaceutics 15, n.º 4 (28 de março de 2023): 1084. http://dx.doi.org/10.3390/pharmaceutics15041084.
Texto completo da fonteMarfoglia, Andrea, Fahd Tibourtine, Ludovic Pilloux e Sophie Cazalbou. "Tunable Double-Network GelMA/Alginate Hydrogels for Platelet Lysate-Derived Protein Delivery". Bioengineering 10, n.º 9 (5 de setembro de 2023): 1044. http://dx.doi.org/10.3390/bioengineering10091044.
Texto completo da fonteKondo, Shinji, Ung-il Chung e Takamasa Sakai. "Mechanical properties of polymer gels with bimodal distribution in strand length". MRS Proceedings 1622 (2014): 31–36. http://dx.doi.org/10.1557/opl.2014.36.
Texto completo da fonteChiang, Yi-Hua, Meng-Ju Wu, Wei-Chin Hsu e Teh-Min Hu. "Versatile composite hydrogels for drug delivery and beyond". Journal of Materials Chemistry B 8, n.º 38 (2020): 8830–37. http://dx.doi.org/10.1039/d0tb01360a.
Texto completo da fonteSun, Manxi, Jianhui Qiu, Chunyin Lu, Shuping Jin, Guohong Zhang e Eiichi Sakai. "Multi-Sacrificial Bonds Enhanced Double Network Hydrogel with High Toughness, Resilience, Damping, and Notch-Insensitivity". Polymers 12, n.º 10 (1 de outubro de 2020): 2263. http://dx.doi.org/10.3390/polym12102263.
Texto completo da fonteDesbrieres, Jacques, Stephanie Reynaud, Pierre Marcasuzaa e Francis Ehrenfeld. "Actuator-Like Hydrogels Based on Conductive Chitosan". Advances in Science and Technology 84 (setembro de 2012): 29–38. http://dx.doi.org/10.4028/www.scientific.net/ast.84.29.
Texto completo da fonteTokuyama, Hideaki, Ryo Iriki e Makino Kubota. "Thermosensitive Shape-Memory Poly(stearyl acrylate-co-methoxy poly(ethylene glycol) acrylate) Hydrogels". Gels 9, n.º 1 (10 de janeiro de 2023): 54. http://dx.doi.org/10.3390/gels9010054.
Texto completo da fonteBharmoria, Pankaj, Nobuhiro Yanai e Nobuo Kimizuka. "Recent Progress in Photon Upconverting Gels". Gels 5, n.º 1 (26 de março de 2019): 18. http://dx.doi.org/10.3390/gels5010018.
Texto completo da fonteZhu, Wei, Jinyi Zhang, Zhanqi Wei, Baozhong Zhang e Xisheng Weng. "Advances and Progress in Self-Healing Hydrogel and Its Application in Regenerative Medicine". Materials 16, n.º 3 (31 de janeiro de 2023): 1215. http://dx.doi.org/10.3390/ma16031215.
Texto completo da fonteKwon, Hyuck Joon. "Tissue Engineering of Muscles and Cartilages Using Polyelectrolyte Hydrogels". Advances in Materials Science and Engineering 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/154071.
Texto completo da fonteAu-Yong, Sophie, Melike Firlak, Emily R. Draper, Sofia Municoy, Mark D. Ashton, Geoffrey R. Akien, Nathan R. Halcovitch et al. "Electrochemically Enhanced Delivery of Pemetrexed from Electroactive Hydrogels". Polymers 14, n.º 22 (16 de novembro de 2022): 4953. http://dx.doi.org/10.3390/polym14224953.
Texto completo da fonteCheng, Qiuhong, Zhuoer Wang, Aiyou Hao, Pengyao Xing e Yanli Zhao. "Aromatic vapor responsive molecular packing rearrangement in supramolecular gels". Materials Chemistry Frontiers 4, n.º 8 (2020): 2452–61. http://dx.doi.org/10.1039/d0qm00348d.
Texto completo da fonte