Literatura científica selecionada sobre o tema "Gels and Hydrogels"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Gels and Hydrogels".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Gels and Hydrogels"
Xu, Bo, Yuwei Liu, Lanlan Wang, Xiaodong Ge, Min Fu, Ping Wang e Qiang Wang. "High-Strength Nanocomposite Hydrogels with Swelling-Resistant and Anti-Dehydration Properties". Polymers 10, n.º 9 (14 de setembro de 2018): 1025. http://dx.doi.org/10.3390/polym10091025.
Texto completo da fonteBurchak, Vadym, Fritz Koch, Leonard Siebler, Sonja Haase, Verena K. Horner, Xenia Kempter, G. Björn Stark et al. "Evaluation of a Novel Thiol–Norbornene-Functionalized Gelatin Hydrogel for Bioprinting of Mesenchymal Stem Cells". International Journal of Molecular Sciences 23, n.º 14 (19 de julho de 2022): 7939. http://dx.doi.org/10.3390/ijms23147939.
Texto completo da fonteNaficy, Sina, Hugh R. Brown, Joselito M. Razal, Geoffrey M. Spinks e Philip G. Whitten. "Progress Toward Robust Polymer Hydrogels". Australian Journal of Chemistry 64, n.º 8 (2011): 1007. http://dx.doi.org/10.1071/ch11156.
Texto completo da fonteBhuyan, Md Murshed, e Jae-Ho Jeong. "Gels/Hydrogels in Different Devices/Instruments—A Review". Gels 10, n.º 9 (23 de agosto de 2024): 548. http://dx.doi.org/10.3390/gels10090548.
Texto completo da fonteShoukat, Hina, Fahad Pervaiz e Sobia Noreen. "Novel Crosslinking Methods to Design Hydrogels". Global Pharmaceutical Sciences Review I, n.º I (30 de dezembro de 2016): 1–5. http://dx.doi.org/10.31703/gpsr.2016(i-i).01.
Texto completo da fonteLi, Peng, Nam Hoon Kim, Sambhu Bhadra e Joong Hee Lee. "Electroresponsive Property of Novel Poly(acrylate- acryloyloxyethyl trimethyl ammonium chloride)/Clay Nanocomposite Hydrogels". Advanced Materials Research 79-82 (agosto de 2009): 2263–66. http://dx.doi.org/10.4028/www.scientific.net/amr.79-82.2263.
Texto completo da fonteGorantla, Srividya, Tejashree Waghule, Vamshi Krishna Rapalli, Prem Prakash Singh, Sunil Kumar Dubey, Ranendra Narayan Saha e Gautam Singhvi. "Advanced Hydrogels Based Drug Delivery Systems for Ophthalmic Delivery". Recent Patents on Drug Delivery & Formulation 13, n.º 4 (29 de abril de 2020): 291–300. http://dx.doi.org/10.2174/1872211314666200108094851.
Texto completo da fonteO’Connor, Naphtali A., Abdulhaq Syed, Madeline Wong, Josiah Hicks, Greisly Nunez, Andrei Jitianu, Zach Siler e Marnie Peterson. "Polydopamine Antioxidant Hydrogels for Wound Healing Applications". Gels 6, n.º 4 (31 de outubro de 2020): 39. http://dx.doi.org/10.3390/gels6040039.
Texto completo da fonteFallon, Halligan, Pezzoli, Geever e Higginbotham. "Synthesis and Characterisation of Novel Temperature and pH Sensitive Physically Cross-Linked Poly (N-vinylcaprolactam-co-itaconic Acid) Hydrogels for Drug Delivery". Gels 5, n.º 3 (29 de agosto de 2019): 41. http://dx.doi.org/10.3390/gels5030041.
Texto completo da fonteSeida, Yoshimi, e Hideaki Tokuyama. "Hydrogel Adsorbents for the Removal of Hazardous Pollutants—Requirements and Available Functions as Adsorbent". Gels 8, n.º 4 (3 de abril de 2022): 220. http://dx.doi.org/10.3390/gels8040220.
Texto completo da fonteTeses / dissertações sobre o assunto "Gels and Hydrogels"
Vaculíková, Hana. "Hyaluronan hydrogels". Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2019. http://www.nusl.cz/ntk/nusl-401877.
Texto completo da fonteShukla, Pranav. "Inducing Liquid Evaporation with Hygroscopic Gels". Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/101555.
Texto completo da fonteMaster of Science
Park, Tae Gwan. "Immobilized biocatalysts in stimuli-sensitive hydrogels /". Thesis, Connect to this title online; UW restricted, 1990. http://hdl.handle.net/1773/8070.
Texto completo da fonteRehab, M. M. A. M. "Preparation and characterization of copolymeric hydrogels". Thesis, University of Salford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381697.
Texto completo da fonteGräfe, David. "Tetra-Responsive Grafted Hydrogels for Flow Control in Microfluidics". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-219926.
Texto completo da fonteSingh, Nishant. "Functional gels as microreactors". Doctoral thesis, Universitat Jaume I, 2016. http://hdl.handle.net/10803/397698.
Texto completo da fonteHidrogelantes funcionalizados sobre autoensamblaje pueden demostrar como la catálisis enzimática mejorada basada en varios factores tales como bolsillos hidrofóbicos, cambio en pH, cambio en pKa, aumento en la concentración local de los sitios activos etc. Aquí presentamos tales tipos de hidrogelantes que son capaces de demostrar varios tipos de reacciones importantes como aldolica, Mannicli, hidrolisis, deactetalisation, etc.
Mujeeb, Ayeesha. "Self-assembled octapeptide gels for cartilage repair". Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/selfassembled-octapeptide-gels-for-cartilage-repair(ce161da3-4ce4-4d42-b0cc-6933fc6aa394).html.
Texto completo da fonteBuerkle, Lauren Elizabeth. "Tailoring the Properties of Supramolecular Gels". Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1317946752.
Texto completo da fonteGruberová, Eliška. "Gelace hydrofobizovaného hyaluronanu". Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-449414.
Texto completo da fonteLe, blay Heiva. "Use of shear wave imaging to assess the mechanical and fracture behaviors of tough model gels". Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLS096.
Texto completo da fonteA hydrogel is a soft material, largely swollen with water, made elastic via a network of polymer chains. A gel is inherently fragile. This brittleness can be overcome by adding dynamic sacrificial bonds. Macromolecular engineering of the 21st century has made possible the formulation of gels for use in biology in order to provide synthetic materials while addressing biocompatibility issues, tissue/material interface compatibility, and mechanical properties that the body requires. However, the fracture of these highly deformable and sometimes viscoelastic materials remains a poorly understood subject that has been little investigated experimentally. The challenge today is to better understand the mechanisms involved at the crack tip but the experimental techniques that allow a local approach and with fast acquisition rates are limited. Our work aims at developing an innovative method to probe the fracture of gels. Water being their main component, these materials, like biological tissues, are an excellent platform to study the propagation of acoustic waves, i.e. shear (S) or compression (P) waves. In materials composed mainly of water, compressional waves, typically ultrasound, propagate at about 1500 m/s (P-wave velocity in water) while shear waves are of the order of m/s (between about 1-8 m/s) and their velocity increases with the rigidity of the material. It is therefore possible to see the S waves propagating through the difference in speed between these two waves. This is the principle of shear wave elastography, an imaging technique used in this study to understand the mechanics and fracture of hydrogels.The gel fracture was studied locally at the crack tip in a quasi-static way. Then, the physical phenomena involved during crack propagation were investigated using ultrafast imaging.It is important to understand how the fracture propagates and if it is possible to avoid or stop it. The goal of any material is to avoid breaking and therefore to resist fracture propagation
Livros sobre o assunto "Gels and Hydrogels"
Park, Kinam. Biodegradable hydrogels for drug delivery. Lancaster, PA: Technomic Pub., 1993.
Encontre o texto completo da fonteM, Ottenbrite Raphael, Huang Samuel J. 1937-, Park Kinam, American Chemical Society Meeting e American Chemical Society. Division of Polymer Chemistry. (Washington, D.C.), eds. Hydrogels and biodegradable polymers for bioapplications. Washington, D.C: American Chemical Society, 1996.
Encontre o texto completo da fonteScott, Adams, Palaszewski Bryan e United States. National Aeronautics and Space Administration., eds. Nanoparticulate gellants for metallized gelled liquid hydrogen wth aluminum. [Washington, DC]: National Aeronautics and Space Administration, 1996.
Encontre o texto completo da fonteB, Sunkara H., e United States. National Aeronautics and Space Administration., eds. Design of intelligent mesoscale periodic array structures utilizing smart hydrogel. [Washington, D.C: National Aeronautics and Space Administration, 1996.
Encontre o texto completo da fonteHydrogels in medicine and pharmacy. Boca Raton, Fla: CRC Press, 1986.
Encontre o texto completo da fontePeppas, Nikolaos. Hydrogels in Medicine and Pharmacy: Fundamentals. CRC Press, 1987.
Encontre o texto completo da fontePark, Kinam, Haesun Park e Waleed S. W. Shalaby. Biodegradable Hydrogels for Drug Delivery. Taylor & Francis Group, 1993.
Encontre o texto completo da fontePark, Kinam, Haesun Park e Waleed S. W. Shalaby. Biodegradable Hydrogels for Drug Delivery. Taylor & Francis Group, 1993.
Encontre o texto completo da fontePark, Kinam, Haesun Park e Waleed S. W. Shalaby. Biodegradable Hydrogels for Drug Delivery. Taylor & Francis Group, 1993.
Encontre o texto completo da fonteGels Handbook : Fundamentals, Properties and ApplicationsVolume 1 : Fundamentals of Hydrogelsvolume 2 : Applications of Hydrogels in Regenerative Medicinevolume 3: Application of Hydrogels in Drug Delivery and Biosensing. World Scientific Publishing Co Pte Ltd, 2016.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Gels and Hydrogels"
Brøndsted, Helle, e Jindřich Kopeček. "pH-Sensitive Hydrogels". In Polyelectrolyte Gels, 285–304. Washington, DC: American Chemical Society, 1992. http://dx.doi.org/10.1021/bk-1992-0480.ch017.
Texto completo da fonteKong, Weiqing, Qingqing Dai, Cundian Gao, Junli Ren, Chuanfu Liu e Runcang Sun. "Hemicellulose-Based Hydrogels and Their Potential Application". In Polymer Gels, 87–127. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6086-1_3.
Texto completo da fonteOsada, Yoshihito, Ryuzo Kawamura e Ken-Ichi Sano. "Biomimetic Functions of Synthetic Polymer Gels". In Hydrogels of Cytoskeletal Proteins, 73–79. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27377-8_7.
Texto completo da fonteGitsov, Ivan, Thomas Lys e Chao Zhu. "Amphiphilic Hydrogels with Highly Ordered Hydrophobic Dendritic Domains". In Polymer Gels, 218–32. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2002-0833.ch015.
Texto completo da fonteDualeh, Abdulkadir J., e Carol A. Steiner. "Structure and Properties of Surfactant-Bridged Viscoelastic Hydrogels". In Polyelectrolyte Gels, 42–52. Washington, DC: American Chemical Society, 1992. http://dx.doi.org/10.1021/bk-1992-0480.ch003.
Texto completo da fonteOppermann, W. "Swelling Behavior and Elastic Properties of Ionic Hydrogels". In Polyelectrolyte Gels, 159–70. Washington, DC: American Chemical Society, 1992. http://dx.doi.org/10.1021/bk-1992-0480.ch010.
Texto completo da fonteDong, Liang Chang, e Allan S. Hoffman. "Thermally Reversible Hydrogels". In Reversible Polymeric Gels and Related Systems, 236–44. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0350.ch016.
Texto completo da fonteChau, Mokit, Shivanthi Easwari Sriskandha, Héloïse Thérien-Aubin e Eugenia Kumacheva. "Supramolecular Nanofibrillar Polymer Hydrogels". In Supramolecular Polymer Networks and Gels, 167–208. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15404-6_5.
Texto completo da fonteAllcock, Harry R., e Archel Ambrosio. "Synthesis and Characterization of pH-Responsive Poly(organophosphazene) Hydrogels". In Polymer Gels, 82–101. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2002-0833.ch006.
Texto completo da fontePape, A. C. H., e Patricia Y. W. Dankers. "Supramolecular Hydrogels for Regenerative Medicine". In Supramolecular Polymer Networks and Gels, 253–79. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15404-6_7.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Gels and Hydrogels"
Morovati, Vahid, Mohammad Ali Saadat e Roozbeh Dargazany. "Modelling Stress Softening and Necking Phenomena in Double Network Hydrogels". In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-12253.
Texto completo da fonteGeisler, Chris G., Ho-Lung Li, David M. Wootton, Peter I. Lelkes e Jack G. Zhou. "Soft Biomaterial Study for 3-D Tissue Scaffold Printing". In ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34274.
Texto completo da fonteVicente, Adam, Zachary McCreery e Karen Chang Yan. "Printability of Hydrogels for Hydrogel Molding Based Microfluidic Device Fabrication". In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11545.
Texto completo da fonteHaraguchi, Kazutoshi, e Toru Takehisa. "Novel Manufacturing Process of Nanocomposite Hydrogel For Bio-Applications". In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80533.
Texto completo da fonteMorovati, Vahid, e Roozbeh Dargazany. "Micro-Mechanical Modeling of the Stress Softening in Double-Network Hydrogels". In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88252.
Texto completo da fonteThien, Austen, e Kishore Pochiraju. "Additive Manufacturing Techniques for Soft Electroactive Polymer Hydrogels Using a Customized 3D Printer". In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72007.
Texto completo da fonteMarks, William H., Sze C. Yang, George W. Dombi e Sujata K. Bhatia. "Carbon Nanobrushes Embedded Within Hydrogel Composites for Tissue Engineering". In ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93122.
Texto completo da fonteYao, Hai, e Weiyong Gu. "New Insight Into Deformation-Dependent Hydraulic Permeability of Hydrogels and Cartilage". In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32520.
Texto completo da fonteDrzewiecki, Kathryn, Ian Gaudet, Douglas Pike, Jonathan Branch, Vikas Nanda e David Shreiber. "Temperature Dependent Reversible Self Assembly of Methacrylated Collagen Gels". In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14705.
Texto completo da fonteEarnshaw, Audrey L., Justine J. Roberts, Garret D. Nicodemus, Stephanie J. Bryant e Virginia L. Ferguson. "The Mechanical Behavior of Engineered Hydrogels". In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206705.
Texto completo da fonteRelatórios de organizações sobre o assunto "Gels and Hydrogels"
Benicewicz, Brian C., Glenn A. Eisman, S. K. Kumar e S. G. Greenbaum. Sol-Gel Based Polybenzimidazole Membranes for Hydrogen Pumping Devices. Office of Scientific and Technical Information (OSTI), fevereiro de 2014. http://dx.doi.org/10.2172/1121336.
Texto completo da fonte