Artigos de revistas sobre o tema "Gearing, spur"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Gearing, spur".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Medvecká-Beňová, Silvia, Peter Frankovský e Robert Grega. "Influence Gearing Parameters on the Tooth Deformation of Spur Gears". Applied Mechanics and Materials 816 (novembro de 2015): 27–30. http://dx.doi.org/10.4028/www.scientific.net/amm.816.27.
Texto completo da fontePintz, A., e R. Kasuba. "Dynamic Load Factors in Internal Spur Gear Drives". Journal of Mechanisms, Transmissions, and Automation in Design 107, n.º 3 (1 de setembro de 1985): 424–29. http://dx.doi.org/10.1115/1.3260739.
Texto completo da fonteMaláková, Silvia, Michal Puškár, Peter Frankovský, Samuel Sivák e Daniela Harachová. "Influence of the Shape of Gear Wheel Bodies in Marine Engines on the Gearing Deformation and Meshing Stiffness". Journal of Marine Science and Engineering 9, n.º 10 (26 de setembro de 2021): 1060. http://dx.doi.org/10.3390/jmse9101060.
Texto completo da fonteSfakiotakis, V. G., e N. K. Anifantis. "Finite element modeling of spur gearing fractures". Finite Elements in Analysis and Design 39, n.º 2 (dezembro de 2002): 79–92. http://dx.doi.org/10.1016/s0168-874x(02)00063-x.
Texto completo da fonteFlek, Jan, Martin Dub, Josef Kolář, František Lopot e Karel Petr. "Determination of Mesh Stiffness of Gear—Analytical Approach vs. FEM Analysis". Applied Sciences 11, n.º 11 (28 de maio de 2021): 4960. http://dx.doi.org/10.3390/app11114960.
Texto completo da fonteLyashenko, Vyacheslav, e Diana Rudenko. "Modeling Deformation of Spur Gear". International Journal of Recent Technology and Applied Science 3, n.º 2 (19 de setembro de 2021): 81–91. http://dx.doi.org/10.36079/lamintang.ijortas-0302.275.
Texto completo da fonteSachidananda, H. K., K. Raghunandana e B. Shivamurthy. "Power loss analysis in altered tooth-sum spur gearing". MATEC Web of Conferences 144 (2018): 01015. http://dx.doi.org/10.1051/matecconf/201814401015.
Texto completo da fonteMalák, Miroslav. "Deformation and Stiffness of Spur Gearing Solved by FEM". Applied Mechanics and Materials 611 (agosto de 2014): 194–97. http://dx.doi.org/10.4028/www.scientific.net/amm.611.194.
Texto completo da fonteSachidananda, H. K., K. Raghunandana e B. Shivamurthy. "Power loss analysis in altered tooth-sum spur gearing". MATEC Web of Conferences 144 (2018): 01015. http://dx.doi.org/10.1051/matecconf/201714401015.
Texto completo da fonteLebedev, Sergey Yu. "ANALYSIS OF METHODS FOR CALCULATING SPUR GEAR FOR DEEP CONTACT STRENGTH". Architecture, Construction, Transport, n.º 3(97) (2021): 90–97. http://dx.doi.org/10.31660/2782-232x-2021-3-90-97.
Texto completo da fonteAnferov, V. N., e A. A. Koval’kov. "Test data for the efficiency of the spiroid spur gearing". Journal of Mining Science 42, n.º 6 (novembro de 2006): 617–21. http://dx.doi.org/10.1007/s10913-006-0108-6.
Texto completo da fonteRao, K. Sreenivasa, G. E. Babu, P. Ravi kumar, M. Anusha, A. Saiprashad e P. Kiran Babu. "Validation and Profile Modification of a Spur Gear to Improve the Gear Tooth Strengths". International Journal of Innovative Research in Computer Science & Technology 10, n.º 4 (26 de julho de 2022): 218–21. http://dx.doi.org/10.55524/ijircst.2022.10.4.27.
Texto completo da fonteTimofeev, B. P., e N. T. Dang. "Increasing the Overlap Factor in the Elastic Model of a Modified Gear". Proceedings of Higher Educational Institutions. Маchine Building, n.º 10 (715) (outubro de 2019): 33–42. http://dx.doi.org/10.18698/0536-1044-2019-10-33-42.
Texto completo da fonteTkach, Pavlo, Pavlo Nosko, Oleksandr Bashta, Grygorii Boiko e Olha Herasymova. "PERFORMANCE INDICATORS OF CONCHOIDAL STRAIGHT SPUR GEARS WITH INCREASED LOADING CAPACITY. THE THEORY". Bulletin of the National Technical University «KhPI» Series: Engineering and CAD, n.º 2 (30 de dezembro de 2021): 85–93. http://dx.doi.org/10.20998/2079-0775.2021.2.12.
Texto completo da fonteBelarifi, Farid, e E. Bayraktar. "The Tredgold Method in Reverse Engineering to Check the Assembly of a Conical Spur Gear Using CAD". Advanced Materials Research 264-265 (junho de 2011): 1598–603. http://dx.doi.org/10.4028/www.scientific.net/amr.264-265.1598.
Texto completo da fonteWang, Zhi-Gen, Chien-Cheng Lo e Yi-Cheng Chen. "Comparison and Verification of Dynamic Simulations and Experiments for a Modified Spur Gear Pair". Machines 10, n.º 3 (6 de março de 2022): 191. http://dx.doi.org/10.3390/machines10030191.
Texto completo da fonteKiong, Sia Chee, Jia Hang Wu e Nik Hisyamudin Muhd Nor. "Maximum Torque of Combinations Threat for Spur Gear Based on AGMA Standard". Applied Mechanics and Materials 465-466 (dezembro de 2013): 1347–51. http://dx.doi.org/10.4028/www.scientific.net/amm.465-466.1347.
Texto completo da fonteTurof, M., F.-V. Panaitescu, M. Panaitescu, L.-G. Dumitrescu e I. Voicu. "Use of kinematic restrictions in case of parralel spur gearing design". IOP Conference Series: Materials Science and Engineering 400 (18 de setembro de 2018): 042059. http://dx.doi.org/10.1088/1757-899x/400/4/042059.
Texto completo da fontePrabhakaran, S., e S. Ramachandran. "Comparison of Bending Stress of a Spur Gear for Different Materials and Modules Using AGMA Standards in FEA". Advanced Materials Research 739 (agosto de 2013): 382–87. http://dx.doi.org/10.4028/www.scientific.net/amr.739.382.
Texto completo da fonteElkholy, A. H. "Tooth Load Sharing in High-Contact Ratio Spur Gears". Journal of Mechanisms, Transmissions, and Automation in Design 107, n.º 1 (1 de março de 1985): 11–16. http://dx.doi.org/10.1115/1.3258674.
Texto completo da fonteRavivarman, R., K. Palaniradja e R. Prabhu Sekar. "Performance enhancement of normal contact ratio gearing system through correction factor". Journal of Mechanical Engineering and Sciences 13, n.º 3 (27 de setembro de 2019): 5242–58. http://dx.doi.org/10.15282/jmes.13.3.2019.03.0429.
Texto completo da fonteSyromyatnikov, V. S., Garcia Martinez Juan Marcos, Samora Quintana Laura Angelica e Ortega Rosales Miguel Gersaun. "Design of spur gearbox shafts for fatigue Fatigue Design of Spur Gearbox Shafts". Proceedings of Higher Educational Institutions. Маchine Building, n.º 7 (712) (julho de 2019): 3–10. http://dx.doi.org/10.18698/0536-1044-2019-7-3-10.
Texto completo da fonteJellen, Marcus J., Ieva Liepuoniute, Mingoo Jin, Christopher G. Jones, Song Yang, Xing Jiang, Hosea M. Nelson, K. N. Houk e Miguel A. Garcia-Garibay. "Enhanced Gearing Fidelity Achieved Through Macrocyclization of a Solvated Molecular Spur Gear". Journal of the American Chemical Society 143, n.º 20 (17 de maio de 2021): 7740–47. http://dx.doi.org/10.1021/jacs.1c01885.
Texto completo da fonteAnderson, N. E., e S. H. Loewenthal. "Efficiency of Nonstandard and High Contact Ratio Involute Spur Gears". Journal of Mechanisms, Transmissions, and Automation in Design 108, n.º 1 (1 de março de 1986): 119–26. http://dx.doi.org/10.1115/1.3260774.
Texto completo da fontePrabhu Sekar, R. "Performance enhancement of spur gear formed through asymmetric tooth". Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 233, n.º 9 (14 de março de 2019): 1361–78. http://dx.doi.org/10.1177/1350650119837822.
Texto completo da fontePetr, Karel, Vojtěch Dynybyl e Jan Křepela. "Experimental Tests and FEM Simulations of Flank Breakage on Tooth of Gears with Respect to Different Nitrided Depths". Applied Mechanics and Materials 732 (fevereiro de 2015): 257–60. http://dx.doi.org/10.4028/www.scientific.net/amm.732.257.
Texto completo da fonteZheng, Fangyan, Jun Zhang, Ligang Yao e Rulong Tan. "Investigation on the wear of spur gears generated by modified cutter". Friction 9, n.º 2 (18 de julho de 2020): 288–300. http://dx.doi.org/10.1007/s40544-019-0337-8.
Texto completo da fonteYong-tao, Tian, Li Cong-xin, Tong Wei e Wu Chang-hua. "A Finite-Element-Based Study of the Load Distribution of a Heavily Loaded Spur Gear System With Effects of Transmission Shafts and Gear Blanks". Journal of Mechanical Design 125, n.º 3 (1 de setembro de 2003): 625–31. http://dx.doi.org/10.1115/1.1584689.
Texto completo da fonteSachidananda, H. K., Joseph Gonsalvis e H. R. Prakash. "Experimental investigation of fatigue behavior of spur gear in altered tooth-sum gearing". Frontiers of Mechanical Engineering 7, n.º 3 (setembro de 2012): 268–78. http://dx.doi.org/10.1007/s11465-012-0331-6.
Texto completo da fonteKUANG, J. H., e A. D. LIN. "THEORETICAL ASPECTS OF TORQUE RESPONSES IN SPUR GEARING DUE TO MESH STIFFNESS VARIATION". Mechanical Systems and Signal Processing 17, n.º 2 (março de 2003): 255–71. http://dx.doi.org/10.1006/mssp.2002.1516.
Texto completo da fonteMRKVICA, IVAN, TIBOR JURGA, ANETA SLANINKOVA, JOZEF JURKO, ANTON PANDA e PAVEL KRPEC. "DESIGN OF A COMPUTER-AIDED GEAR MANUFACTURING TOOL – RACK-SHAPED CUTTER". MM Science Journal 2021, n.º 6 (15 de dezembro de 2021): 5403–9. http://dx.doi.org/10.17973/mmsj.2021_12_2021108.
Texto completo da fonteOlver, A. V. "Gear lubrication—a review". Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 216, n.º 5 (1 de maio de 2002): 255–67. http://dx.doi.org/10.1243/135065002760364804.
Texto completo da fonteBudzik, Grzegorz, Bogdan Kozik e Jacek Pacana. "Defining influence of load conditions on distribution and value of stresses in dual-power-path gear wheels applying FEM". Aircraft Engineering and Aerospace Technology 85, n.º 6 (14 de outubro de 2013): 453–59. http://dx.doi.org/10.1108/aeat-10-2012-0197.
Texto completo da fonteChandanshive, Mr Ankush Vilas, e Prof D. H. Nimbalkar. "Design, Analysis and Weight Optimization Lathe Machine Gear by Using Composite Material". International Journal for Research in Applied Science and Engineering Technology 10, n.º 10 (31 de outubro de 2022): 484–87. http://dx.doi.org/10.22214/ijraset.2022.47018.
Texto completo da fonteMAREK, TOMAS, e PAVEL NEMECEK. "TRANSMISSION ERROR AND SOUND PRESSURE LEVEL OF SPUR GEARING WITH STRAIGHT AND HELICAL TEETH". MM Science Journal 2022, n.º 4 (16 de novembro de 2022): 6069–73. http://dx.doi.org/10.17973/mmsj.2022_11_2022129.
Texto completo da fonteFalah, A. H., e A. H. Elkholy. "LOAD AND STRESS ANALYSIS OF CYLINDRICAL WORM GEARING USING TOOTH SLICING METHOD". Transactions of the Canadian Society for Mechanical Engineering 30, n.º 1 (março de 2006): 97–111. http://dx.doi.org/10.1139/tcsme-2006-0007.
Texto completo da fonteSpiegelberg, C., e M. Christie. "Torque loss in spur gears with interference". Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 217, n.º 5 (1 de maio de 2003): 385–95. http://dx.doi.org/10.1243/135065003322445304.
Texto completo da fonteLevin, Crissa, e Jennifer Grewe. "Distance Learning Lab: A Model for Undergraduate Research". Scholarship and Practice of Undergraduate Research 4, n.º 2 (1 de fevereiro de 2021): 15–20. http://dx.doi.org/10.18833/spur/4/2/12.
Texto completo da fonteLi, J.-L., e S.-T. Chiou. "Surface design and tooth contact analysis of an innovative modified spur gear with crowned teeth". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 219, n.º 2 (1 de fevereiro de 2005): 193–207. http://dx.doi.org/10.1243/095440605x8397.
Texto completo da fonteLiu, Hu Ran. "Revision of Tooth Surface in Order to Compensate the Load Deviation of the Plastic Gears". Advanced Materials Research 139-141 (outubro de 2010): 1084–87. http://dx.doi.org/10.4028/www.scientific.net/amr.139-141.1084.
Texto completo da fonteLee, Cheng Kang. "A Precise and Efficient Method to Manipulate the Amplitude of Parabolic Function of Transmission Errors". Advanced Materials Research 1064 (dezembro de 2014): 183–90. http://dx.doi.org/10.4028/www.scientific.net/amr.1064.183.
Texto completo da fonteShaabidov, Sh A., e B. A. Irgashev. "Computational Procedure of a Gearing Module of Spur Gear Transmissions on Wear Resistance of Gearwheel Teeth". Journal of Friction and Wear 40, n.º 5 (setembro de 2019): 431–36. http://dx.doi.org/10.3103/s1068366619050155.
Texto completo da fonteChi, Yifei, Yaping Zhao, Xinyue Zhu, Gongfa Li e Xinyuan Chen. "Mismatched gearing composed of hourglass worm and spur gear: Meshing theory, tooth contact simulation, comprehensive design". Mechanism and Machine Theory 174 (agosto de 2022): 104883. http://dx.doi.org/10.1016/j.mechmachtheory.2022.104883.
Texto completo da fonteLI, Shuting. "S1120202 Diaphragm Stress Analysis of an Extremely Thin-Walled Spur Gear Used in the Strain Wave Gearing". Proceedings of Mechanical Engineering Congress, Japan 2015 (2015): _S1120202——_S1120202—. http://dx.doi.org/10.1299/jsmemecj.2015._s1120202-.
Texto completo da fonteSahoo, Vineet, e Rathindranath Maiti. "Static load sharing by tooth pairs in contact in internal involute spur gearing with thin rimmed pinion". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 230, n.º 4 (março de 2016): 485–99. http://dx.doi.org/10.1177/0954406215618424.
Texto completo da fonteWang, Wen Jin, Jing Zhang, Jian Zhao, Ling Li Zhang e Tai Yong Wang. "Study on the Machining Mathematical Model and Simulation of Face-Gear with Curvilinear Shaped Teeth Based on the Local Conjugate Theory of Gearing". Advanced Materials Research 462 (fevereiro de 2012): 105–8. http://dx.doi.org/10.4028/www.scientific.net/amr.462.105.
Texto completo da fonteBahgat, B. M., M. O. M. Osman e R. V. Dukkipati. "On the Dynamic Gear Tooth Loading of Planetary Gearing as Affected by Bearing Clearances in High-Speed Machinery". Journal of Mechanisms, Transmissions, and Automation in Design 107, n.º 3 (1 de setembro de 1985): 430–36. http://dx.doi.org/10.1115/1.3260740.
Texto completo da fonteIshin, Nikolay, Serhii Gavrylov, Arkadiy Goman, Andrey Skorokhodov e Juriy Dakalo. "COMPUTATIONAL AND EXPERIMENTAL METHOD FOR ESTIMATING THE RESIDUAL LIFE OF GEARS BASED ON VIBRATION MONITORING DATA". Bulletin of the National Technical University «KhPI» Series: Engineering and CAD, n.º 2 (30 de dezembro de 2021): 143–48. http://dx.doi.org/10.20998/2079-0775.2021.2.16.
Texto completo da fonteKalligeros, Christos, Panagiotis Koronaios, Panteleimon Tzouganakis, Christos Papalexis, Antonios Tsolakis e Vasilios Spitas. "Development of a free-form tooth flank optimization method to improve pitting resistance of spur gears". MATEC Web of Conferences 366 (2022): 01003. http://dx.doi.org/10.1051/matecconf/202236601003.
Texto completo da fonteISHIKAWA, Shoichi. "GDS-12 A GEOMETRIC RELATIONSHIP BETWEEN PITCH CURVES AND TOOTH PROFILES IN SPUR GEARING WITH VARIABLE RATIO(GEAR DESIGN AND SYNTHESIS)". Proceedings of the JSME international conference on motion and power transmissions II.01.202 (2001): 484–87. http://dx.doi.org/10.1299/jsmeimpt.ii.01.202.484.
Texto completo da fonte