Artigos de revistas sobre o tema "Gaussian-Type atomic orbitals"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 46 melhores artigos de revistas para estudos sobre o assunto "Gaussian-Type atomic orbitals".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Gomes, Andr� Severo Pereira, e Rog�rio Custodio. "Exact Gaussian expansions of Slater-type atomic orbitals". Journal of Computational Chemistry 23, n.º 10 (22 de maio de 2002): 1007–12. http://dx.doi.org/10.1002/jcc.10090.
Texto completo da fonteDesmarais, N., G. Dancausse e S. Fliszár. "A simple quality test for self-consistent-field atomic orbitals". Canadian Journal of Chemistry 71, n.º 2 (1 de fevereiro de 1993): 175–79. http://dx.doi.org/10.1139/v93-025.
Texto completo da fonteMohammed, Tawfik Mahmood. "Mathematical modeling of the electronic structure of Titanium dioxide \((TiO_2 )_6\) nanoparticles". University of Aden Journal of Natural and Applied Sciences 24, n.º 2 (22 de março de 2022): 519–26. http://dx.doi.org/10.47372/uajnas.2020.n2.a19.
Texto completo da fonteMitroy, J. "A Hartree - Fock Program for Atomic Structure Calculations". Australian Journal of Physics 52, n.º 6 (1999): 973. http://dx.doi.org/10.1071/ph99042.
Texto completo da fonteKuang, Jiyun, e C. D. Lin. "Molecular integrals over spherical Gaussian-type orbitals: I". Journal of Physics B: Atomic, Molecular and Optical Physics 30, n.º 11 (14 de junho de 1997): 2529–48. http://dx.doi.org/10.1088/0953-4075/30/11/007.
Texto completo da fonteDacosta, Herbert F. M., Milan Trsic e Alfredo M. Simas. "Hydrogen-type orbitals in terms of Gaussian functions". International Journal of Quantum Chemistry 65, n.º 2 (1997): 143–50. http://dx.doi.org/10.1002/(sici)1097-461x(1997)65:2<143::aid-qua5>3.0.co;2-w.
Texto completo da fonteBerlu, Lilian, e Philip Hoggan. "Useful Integrals for Ab-Initio Molecular Quantum Similarity Measurements Using Slater Type Atomic Orbitals". Journal of Theoretical and Computational Chemistry 02, n.º 02 (junho de 2003): 147–61. http://dx.doi.org/10.1142/s0219633603000513.
Texto completo da fonteTanaka, Kiyoaki. "X-ray molecular orbital analysis. I. Quantum mechanical and crystallographic framework". Acta Crystallographica Section A Foundations and Advances 74, n.º 4 (1 de julho de 2018): 345–56. http://dx.doi.org/10.1107/s2053273318005478.
Texto completo da fonteRaynaud, Christophe, Laurent Maron, Jean-Pierre Daudey e Franck Jolibois. "Reconsidering Car–Parrinello molecular dynamics using direct propagation of molecular orbitals developed upon Gaussian type atomic orbitals". Phys. Chem. Chem. Phys. 6, n.º 17 (2004): 4226–32. http://dx.doi.org/10.1039/b402163k.
Texto completo da fonteFernández Rico, J., R. López, I. Ema e G. Ramírez. "Deformed atoms in molecules: analytical representation of atomic densities for Gaussian type orbitals". Journal of Molecular Structure: THEOCHEM 727, n.º 1-3 (agosto de 2005): 115–21. http://dx.doi.org/10.1016/j.theochem.2005.02.028.
Texto completo da fonteNjapba, S. Augustine, e Galadanci M. S. Garba. "Density functional theory study of the nuclear magnetic resonance properties and natural bond orbital analysis of germanium-phenyl nanocluster". Dutse Journal of Pure and Applied Sciences 10, n.º 2c (13 de agosto de 2024): 162–75. http://dx.doi.org/10.4314/dujopas.v10i2c.16.
Texto completo da fontePinchon, Didier, e Philip E. Hoggan. "Gaussian approximation of exponential type orbitals based on B functions". International Journal of Quantum Chemistry 109, n.º 2 (2009): 135–44. http://dx.doi.org/10.1002/qua.21705.
Texto completo da fonteWang, Jian, e Alexei A. Stuchebrukhov. "DFT calculation of electron tunneling currents: Real-space (grid) molecular orbitals vs. Gaussian-type molecular orbitals". International Journal of Quantum Chemistry 80, n.º 4-5 (2000): 591–97. http://dx.doi.org/10.1002/1097-461x(2000)80:4/5<591::aid-qua8>3.0.co;2-j.
Texto completo da fonteBoettger, J. C., M. D. Jones e R. C. Albers. "Structural properties of crystalline uranium from linear combination of Gaussian-type orbitals calculations". International Journal of Quantum Chemistry 75, n.º 4-5 (1999): 911–15. http://dx.doi.org/10.1002/(sici)1097-461x(1999)75:4/5<911::aid-qua55>3.0.co;2-x.
Texto completo da fonteKuang, Jiyun, e C. D. Lin. "Molecular integrals over spherical Gaussian-type orbitals: II. Modified with plane-wave phase factors". Journal of Physics B: Atomic, Molecular and Optical Physics 30, n.º 11 (14 de junho de 1997): 2549–67. http://dx.doi.org/10.1088/0953-4075/30/11/008.
Texto completo da fontePlatonenko, Alexander, Sergei Piskunov, Thomas C. K. Yang, Jurga Juodkazyte, Inta Isakoviča, Anatoli I. Popov, Diana Junisbekova, Zein Baimukhanov e Alma Dauletbekova. "Electronic Structure of Mg-, Si-, and Zn-Doped SnO2 Nanowires: Predictions from First Principles". Materials 17, n.º 10 (7 de maio de 2024): 2193. http://dx.doi.org/10.3390/ma17102193.
Texto completo da fonteBoettger, Jonathan Carl. "Spin-polarized fully relativistic linear combinations of Gaussian-type orbitals calculations for fcc plutonium". International Journal of Quantum Chemistry 95, n.º 4-5 (2003): 380–86. http://dx.doi.org/10.1002/qua.10588.
Texto completo da fonteDomnin, Anton V., Ilia E. Mikhailov e Robert A. Evarestov. "DFT Study of WS2-Based Nanotubes Electronic Properties under Torsion Deformations". Nanomaterials 13, n.º 19 (4 de outubro de 2023): 2699. http://dx.doi.org/10.3390/nano13192699.
Texto completo da fontePalmer, Michael H. "The ab initio Calculation of Nuclear Quadrupole Coupling Constants with Special Reference to 33S". Zeitschrift für Naturforschung A 47, n.º 1-2 (1 de fevereiro de 1992): 203–16. http://dx.doi.org/10.1515/zna-1992-1-235.
Texto completo da fonteIshida, Kazuhiro. "ACE algorithm for the rapid evaluation of the electron-repulsion integral over Gaussian-type orbitals". International Journal of Quantum Chemistry 59, n.º 3 (1996): 209–18. http://dx.doi.org/10.1002/(sici)1097-461x(1996)59:3<209::aid-qua4>3.0.co;2-1.
Texto completo da fonteCesco, J. C., C. C. Denner, G. O. Giubergia, A. E. Rosso, J. E. P�rez, F. S. Ortiz, O. E. Taurian e R. H. Contreras. "Implementation of atomic basis set composed of 1s Gaussian and 1s Slater-type orbitals to carry out quantum mechanics molecular calculations". Journal of Computational Chemistry 20, n.º 6 (30 de abril de 1999): 604–9. http://dx.doi.org/10.1002/(sici)1096-987x(19990430)20:6<604::aid-jcc6>3.0.co;2-o.
Texto completo da fonteKalinin, N. V., e V. A. Saleev. "Ab initio modeling of Raman and infrared spectra of calcite". Computer Optics 42, n.º 2 (24 de julho de 2018): 263–66. http://dx.doi.org/10.18287/2412-6179-2018-42-2-263-266.
Texto completo da fonteToader, Ana Maria, Maria Cristina Buta e Fanica Cimpoesu. "On the calculation of lanthanide systems. The spectral parameters of praseodymium trivalent ion". Chemistry Journal of Moldova 18, n.º 2 (dezembro de 2023): 78–86. http://dx.doi.org/10.19261/cjm.2023.1146.
Texto completo da fonteJursic, Branko S. "Computation of geometries and frequencies of singlet and triplet nitromethane with density functional theory using Gaussian-type orbitals". International Journal of Quantum Chemistry 64, n.º 2 (1997): 263–69. http://dx.doi.org/10.1002/(sici)1097-461x(1997)64:2<263::aid-qua15>3.0.co;2-a.
Texto completo da fonteUlian, Gianfranco, e Giovanni Valdrè. "Thermomechanical, electronic and thermodynamic properties of ZnS cubic polymorphs: an ab initio investigation on the zinc-blende–rock-salt phase transition". Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 75, n.º 6 (12 de novembro de 2019): 1042–59. http://dx.doi.org/10.1107/s2052520619012630.
Texto completo da fonteHu, Anguang, e Brett I. Dunlap. "Three-center molecular integrals and derivatives using solid harmonic Gaussian orbital and Kohn–Sham potential basis sets". Canadian Journal of Chemistry 91, n.º 9 (setembro de 2013): 907–15. http://dx.doi.org/10.1139/cjc-2012-0485.
Texto completo da fonteKotlyar, V. V., A. A. Kovalev e A. P. Porfirev. "Measurement of the orbital angular momentum of an astigmatic Hermite–Gaussian beam". Computer Optics 43, n.º 3 (junho de 2019): 356–67. http://dx.doi.org/10.18287/2412-6179-2019-43-3-356-367.
Texto completo da fontePinheiro da Silva, Braian, Wagner T. Buono, Leonardo J. Pereira, Daniel S. Tasca, Kaled Dechoum e Antonio Z. Khoury. "Spin to orbital angular momentum transfer in frequency up-conversion". Nanophotonics 11, n.º 4 (8 de novembro de 2021): 771–78. http://dx.doi.org/10.1515/nanoph-2021-0493.
Texto completo da fonteJursic, Branko S. "Density functional calculations of difluorodiazete structures with Gaussian-orbital-type approach". International Journal of Quantum Chemistry 57, n.º 2 (15 de janeiro de 1996): 213–17. http://dx.doi.org/10.1002/(sici)1097-461x(1996)57:2<213::aid-qua7>3.0.co;2-0.
Texto completo da fonteLasar, Christian, e Thorsten Klüner. "Explicitly correlated orbital optimized contracted pair correlation methods: Foundations and applications". Journal of Theoretical and Computational Chemistry 17, n.º 04 (junho de 2018): 1850024. http://dx.doi.org/10.1142/s0219633618500244.
Texto completo da fonteSaleev, Vladimir, e Alexandra Shipilova. "First-principles calculations of LiNbO3 optical properties: From far-infrared to ultraviolet". Modern Physics Letters B 32, n.º 05 (20 de fevereiro de 2018): 1850063. http://dx.doi.org/10.1142/s021798491850063x.
Texto completo da fonteCoursault, Delphine, e Etienne Brasselet. "Nanostructured silica spin–orbit optics for modal vortex beam shaping". Nanophotonics 11, n.º 4 (15 de dezembro de 2021): 805–12. http://dx.doi.org/10.1515/nanoph-2021-0579.
Texto completo da fonteIshimoto, Takayoshi, Masanori Tachikawa e Umpei Nagashima. "Analytical optimization of exponent values in protonic and deuteronic Gaussian-type functions by elimination of translational and rotational motions from multi-component molecular orbital scheme". International Journal of Quantum Chemistry 108, n.º 3 (2007): 472–81. http://dx.doi.org/10.1002/qua.21540.
Texto completo da fonteJursic, Branko S., e Zoran Zdravkovski. "Theoretical investigation of the conrotatory ring opening of cyclobutene and 1, 2-dihydro-1, 2-diazacyclobutadienes with ab initio and density functional Gaussian-type-orbital approach". International Journal of Quantum Chemistry 56, n.º 2 (15 de outubro de 1995): 115–23. http://dx.doi.org/10.1002/qua.560560206.
Texto completo da fonteMathar, Richard J. "Erratum: Mutual conversion of three flavors of gaussian type orbitals". International Journal of Quantum Chemistry, 2009, NA. http://dx.doi.org/10.1002/qua.22353.
Texto completo da fonteShaw, Robert A. "The completeness properties of Gaussian‐type orbitals in quantum chemistry". International Journal of Quantum Chemistry 120, n.º 17 (19 de junho de 2020). http://dx.doi.org/10.1002/qua.26264.
Texto completo da fonteLehtola, Susi. "Importance profiles. Visualization of atomic basis set requirements". Electronic Structure, 8 de março de 2024. http://dx.doi.org/10.1088/2516-1075/ad31ca.
Texto completo da fonteGangal, Krish, İpek Gerz, Tanvi Goyal, Ajeeth Iyer, Vaibhav Vaiyakarnam e Larry McMahan. "Modeling Hartree-Fock approximations of the Schrödinger Equation for multielectron atoms from Helium to Xenon using STO-nG basis sets". Journal of Emerging Investigators, 2023. http://dx.doi.org/10.59720/22-211.
Texto completo da fonteQin, Xinming, Honghui Shang e Jinlong Yang. "Efficient implementation of analytical gradients for periodic hybrid functional calculations within fitted numerical atomic orbitals from NAO2GTO". Frontiers in Chemistry 11 (27 de julho de 2023). http://dx.doi.org/10.3389/fchem.2023.1232425.
Texto completo da fonteKim, Inkoo, Daun Jeong, Won-Joon Son, Hyung-Jin Kim, Young Min Rhee, Yongsik Jung, Hyeonho Choi, Jinkyu Yim, Inkook Jang e Dae Sin Kim. "Kohn–Sham time-dependent density functional theory with Tamm–Dancoff approximation on massively parallel GPUs". npj Computational Materials 9, n.º 1 (26 de maio de 2023). http://dx.doi.org/10.1038/s41524-023-01041-4.
Texto completo da fonteEsteve-Paredes, Juan José, e Juan José Palacios. "A comprehensive study of the velocity, momentum and position matrix elements for Bloch states: Application to a local orbital basis". SciPost Physics Core 6, n.º 1 (20 de janeiro de 2023). http://dx.doi.org/10.21468/scipostphyscore.6.1.002.
Texto completo da fonteKang, Byungkyun, Joshua Vincent, Yongbin Lee, Liqin Ke, Peter A. Crozier e Qiang Zhu. "Modeling surface spin polarization on ceria-supported Pt nanoparticles". Journal of Physics: Condensed Matter, 30 de março de 2022. http://dx.doi.org/10.1088/1361-648x/ac62a3.
Texto completo da fonteMendoza-López, L. A., J. G. Acosta-Montes, J. A. Bernal-Orozco, Y. M. Torres, N. Arias-Téllez, R. Jáuregui e D. Sahagún Sánchez. "Frequency Conversion of Optical Vortex Arrays Through Four-Wave Mixing in Hot Atomic Gases". Frontiers in Physics 10 (11 de julho de 2022). http://dx.doi.org/10.3389/fphy.2022.895023.
Texto completo da fonteSlama, Marwa, Hela Habli, Soulef Jellali e Mounir Ben El Hadj Rhouma. "Computational study of the electronic structure of the Srm+Kr (m=0, 1) van der Waals complexes". Physica Scripta, 21 de junho de 2022. http://dx.doi.org/10.1088/1402-4896/ac7aea.
Texto completo da fonteLi, Shanggeng, Fanghua Zhu, Yawen Zhou, Jiaming Hu, Jing Li, Ning Li, Shuai Zhang, Zhibing He e Lin Zhang. "First theoretical probe for alkynyl bridged thiophene modified coumarin nonlinear optical materials with D-π-A and A-π-D-π-A structures". Journal of Nonlinear Optical Physics & Materials 31, n.º 02 (12 de janeiro de 2022). http://dx.doi.org/10.1142/s0218863522500084.
Texto completo da fonteGhavami Sabouri, Saeed. "Generation of vortex beams with non-uniform phase jumps azimuthal locations". Journal of Optics, 1 de março de 2023. http://dx.doi.org/10.1088/2040-8986/acc043.
Texto completo da fonte