Artigos de revistas sobre o tema "Gastrointestinal system Motility"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Gastrointestinal system Motility".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Wood, Jackie D. "Enteric Nervous System: Neuropathic Gastrointestinal Motility". Digestive Diseases and Sciences 61, n.º 7 (3 de maio de 2016): 1803–16. http://dx.doi.org/10.1007/s10620-016-4183-5.
Texto completo da fonteBURKS, THOMAS F. "Central Nervous System Regulation of Gastrointestinal Motility". Annals of the New York Academy of Sciences 597, n.º 1 Neurobiology (julho de 1990): 36–42. http://dx.doi.org/10.1111/j.1749-6632.1990.tb16156.x.
Texto completo da fonteWang, Po-Min, Genia Dubrovsky, James C. Y. Dunn, Yi-Kai Lo e Wentai Liu. "A Wireless Implantable System for Facilitating Gastrointestinal Motility". Micromachines 10, n.º 8 (9 de agosto de 2019): 525. http://dx.doi.org/10.3390/mi10080525.
Texto completo da fonteAlqudah, M., O. Al-Shboul, A. Al-Dwairi, D. G. Al-U´Dat e A. Alqudah. "Progesterone Inhibitory Role on Gastrointestinal Motility". Physiological Research, n.º 2 (30 de abril de 2022): 193–98. http://dx.doi.org/10.33549/physiolres.934824.
Texto completo da fonteStern, H. Patrick, Suzanne E. Stroh, Stephen C. Fiedorek, Kelly Kelleher, Michael W. Mellon, Sandra K. Pope e Phillip L. Rayford. "Increased Plasma Levels of Pancreatic Polypeptide and Decreased Plasma Levels of Motilin in Encopretic Children". Pediatrics 96, n.º 1 (1 de julho de 1995): 111–17. http://dx.doi.org/10.1542/peds.96.1.111.
Texto completo da fonteLee, Yunna, Jeongbin Jo, Hae Young Chung, Charalabos Pothoulakis e Eunok Im. "Endocannabinoids in the gastrointestinal tract". American Journal of Physiology-Gastrointestinal and Liver Physiology 311, n.º 4 (1 de outubro de 2016): G655—G666. http://dx.doi.org/10.1152/ajpgi.00294.2015.
Texto completo da fontePlourde, Victor. "Stress-Induced Changes in the Gastrointestinal Motor System". Canadian Journal of Gastroenterology 13, suppl a (1999): 26A—31A. http://dx.doi.org/10.1155/1999/320626.
Texto completo da fonteMilla, PJ. "Acquired Motility Disorders in Childhood". Canadian Journal of Gastroenterology 13, suppl a (1999): 76A—84A. http://dx.doi.org/10.1155/1999/610486.
Texto completo da fonteLópez-Pingarrón, Laura, Henrique Almeida, Marisol Soria-Aznar, Marcos C. Reyes-Gonzales, Ana B. Rodríguez-Moratinos, Antonio Muñoz-Hoyos e Joaquín J. García. "Interstitial Cells of Cajal and Enteric Nervous System in Gastrointestinal and Neurological Pathology, Relation to Oxidative Stress". Current Issues in Molecular Biology 45, n.º 4 (18 de abril de 2023): 3552–72. http://dx.doi.org/10.3390/cimb45040232.
Texto completo da fontePan, H. L., Z. B. Zeisse e J. C. Longhurst. "Mechanical stimulation is not responsible for activation of gastrointestinal afferents during ischemia". American Journal of Physiology-Heart and Circulatory Physiology 272, n.º 1 (1 de janeiro de 1997): H99—H106. http://dx.doi.org/10.1152/ajpheart.1997.272.1.h99.
Texto completo da fonteNakamura, Hiroyuki, Tadashi Asano, Koichi Haruta e Keisuke Takeda. "Gastrointestinal motor inhibition by exogenous human, salmon, and eel calcitonin in conscious dogs". Canadian Journal of Physiology and Pharmacology 73, n.º 1 (1 de janeiro de 1995): 43–49. http://dx.doi.org/10.1139/y95-006.
Texto completo da fonteSpencer, Nick J., e Hongzhen Hu. "Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility". Nature Reviews Gastroenterology & Hepatology 17, n.º 6 (9 de março de 2020): 338–51. http://dx.doi.org/10.1038/s41575-020-0271-2.
Texto completo da fonteNors, Jesper, Mette Winther Klinge, Thorbjørn Sommer, Søren Laurberg, Klaus Krogh e Jonas Amstrup Funder. "Assessment of postoperative gastrointestinal motility in colorectal surgery: a study with the Motilis 3D-transit system". BMJ Innovations 7, n.º 1 (25 de novembro de 2020): 53–60. http://dx.doi.org/10.1136/bmjinnov-2019-000396.
Texto completo da fonte., Manojkumar, e Sangeeta Gehlot. "EFFECT OF SHARAPUNKHA (TEPHROSIA PURPUREA) ON GASTROINTESTINAL SYSTEM". International Journal of Research in Ayurveda and Pharmacy 11, n.º 5 (30 de outubro de 2020): 60–63. http://dx.doi.org/10.7897/2277-4343.1105142.
Texto completo da fonteWang, Hao, Wen-Jian Liu, Meng-Jie Hu, Meng-Ting Zhang e Guo-Ming Shen. "Acupuncture at Gastric Back-Shu and Front-Mu Acupoints Enhances Gastric Motility via the Inhibition of the Glutamatergic System in the Hippocampus". Evidence-Based Complementary and Alternative Medicine 2020 (10 de março de 2020): 1–10. http://dx.doi.org/10.1155/2020/3524641.
Texto completo da fonteKrantis, Anthony. "GABA in the Mammalian Enteric Nervous System". Physiology 15, n.º 6 (dezembro de 2000): 284–90. http://dx.doi.org/10.1152/physiologyonline.2000.15.6.284.
Texto completo da fonteBarone, Joseph A., Lois M. Jessen, John L. Colaizzi e Robert H. Bierman. "Cisapride: A Gastrointestinal Prokinetic Drug". Annals of Pharmacotherapy 28, n.º 4 (abril de 1994): 488–500. http://dx.doi.org/10.1177/106002809402800413.
Texto completo da fonteOH, Radhika krishna, Mohammed Abdul Aleem e Geetha Kayla. "Abnormalities of the intestinal pacemaker cells, enteric neurons, and smooth muscle in intestinal atresia". Journal of Laboratory Physicians 11, n.º 03 (julho de 2019): 180–85. http://dx.doi.org/10.4103/jlp.jlp_94_18.
Texto completo da fonteIdrizaj, Eglantina, Rachele Garella, Roberta Squecco e Maria Caterina Baccari. "Adipocytes-released Peptides Involved in the Control of Gastrointestinal Motility". Current Protein & Peptide Science 20, n.º 6 (20 de maio de 2019): 614–29. http://dx.doi.org/10.2174/1389203720666190121115356.
Texto completo da fonteKeely, Stephen J., Andreacarola Urso, Alexandr V. Ilyaskin, Christoph Korbmacher, Nigel W. Bunnett, Daniel P. Poole e Simona E. Carbone. "Contributions of bile acids to gastrointestinal physiology as receptor agonists and modifiers of ion channels". American Journal of Physiology-Gastrointestinal and Liver Physiology 322, n.º 2 (1 de fevereiro de 2022): G201—G222. http://dx.doi.org/10.1152/ajpgi.00125.2021.
Texto completo da fonteDiCello, Jesse J., Simona E. Carbone, Ayame Saito, Vi Pham, Agata Szymaszkiewicz, Arisbel B. Gondin, Sadia Alvi et al. "Positive allosteric modulation of endogenous delta opioid receptor signaling in the enteric nervous system is a potential treatment for gastrointestinal motility disorders". American Journal of Physiology-Gastrointestinal and Liver Physiology 322, n.º 1 (1 de janeiro de 2022): G66—G78. http://dx.doi.org/10.1152/ajpgi.00297.2021.
Texto completo da fonteTack, J., B. Coulie, A. Wilmer, T. Peeters e J. Janssens. "Actions of the 5-hydroxytryptamine 1 receptor agonist sumatriptan on interdigestive gastrointestinal motility in man". Gut 42, n.º 1 (1 de janeiro de 1998): 36–41. http://dx.doi.org/10.1136/gut.42.1.36.
Texto completo da fonteFrieling, Thomas, Christian Kreysel, Michael Blank, Dorothee Müller, Ilka Melchior, Philipp Euler, Rita Kuhlbusch-Zicklam, Thomas Haarmeier e Michael Schemann. "Autoimmune encephalitis and gastrointestinal dysmotility: achalasia, gastroparesis, and slow transit constipation". Zeitschrift für Gastroenterologie 58, n.º 10 (outubro de 2020): 975–81. http://dx.doi.org/10.1055/a-1233-2190.
Texto completo da fonteBerry, Dylan T., Joanne Choi, Calla A. Dexheimer, Morgan A. Verhaalen e Amir Javan-Khoshkholgh. "An Inductively Powered Implantable System to Study the Gastrointestinal Electrophysiology in Freely Behaving Rodents". Bioengineering 9, n.º 10 (6 de outubro de 2022): 530. http://dx.doi.org/10.3390/bioengineering9100530.
Texto completo da fonteDe Winter, Benedicte Y. "Interplay between inflammation, immune system and neuronal pathways: Effect on gastrointestinal motility". World Journal of Gastroenterology 16, n.º 44 (2010): 5523. http://dx.doi.org/10.3748/wjg.v16.i44.5523.
Texto completo da fonteMartinez, Leopoldo, J. Tovar e Federica Pederiva. "Enteric Nervous System and Esophageal-Gastrointestinal Motility in Experimental Congenital Diaphragmatic Hernia". European Journal of Pediatric Surgery 24, n.º 02 (17 de maio de 2013): 141–49. http://dx.doi.org/10.1055/s-0033-1345106.
Texto completo da fonteSchemann, Michael. "Control of Gastrointestinal Motility by the ???Gut Brain??? - The Enteric Nervous System". Journal of Pediatric Gastroenterology and Nutrition 41, Supplement 1 (setembro de 2005): S4—S6. http://dx.doi.org/10.1097/01.scs.0000180285.51365.55.
Texto completo da fonteRai, Ramesh Roop, e V. G. Mohan Prasad. "Prokinetics in the management of upper gastrointestinal motility disorders: an Indian expert opinion review". International Journal of Advances in Medicine 8, n.º 9 (21 de agosto de 2021): 1442. http://dx.doi.org/10.18203/2349-3933.ijam20213253.
Texto completo da fonteHan, Jeong Pil, Jeong Hyeon Lee, Geon Seong Lee, Ok Jae Koo e Su Cheong Yeom. "Positive Correlation between nNOS and Stress-Activated Bowel Motility Is Confirmed by In Vivo HiBiT System". Cells 10, n.º 5 (27 de abril de 2021): 1028. http://dx.doi.org/10.3390/cells10051028.
Texto completo da fonteRadocchia, Giulia, Bruna Neroni, Massimiliano Marazzato, Elena Capuzzo, Simone Zuccari, Fabrizio Pantanella, Letizia Zenzeri et al. "Chronic Intestinal Pseudo-Obstruction: Is There a Connection with Gut Microbiota?" Microorganisms 9, n.º 12 (10 de dezembro de 2021): 2549. http://dx.doi.org/10.3390/microorganisms9122549.
Texto completo da fonteBaldrick, P., D. G. Bamford e M. L. Tattersall. "An assessment of two gastric transport models currently used in safety pharmacology testing". Human & Experimental Toxicology 17, n.º 1 (janeiro de 1998): 1–7. http://dx.doi.org/10.1177/096032719801700101.
Texto completo da fonteSobol, Constantin V. "Stimulatory Effect of Lactobacillus Metabolites on Colonic Contractions in Newborn Rats". International Journal of Molecular Sciences 24, n.º 1 (30 de dezembro de 2022): 662. http://dx.doi.org/10.3390/ijms24010662.
Texto completo da fonteMarkov, A. I. "CLINICAL AND LABORATORY ASSESSMENT OF GASTROINTESTINAL FUNCTION IN CHILDREN WITH ACUTE NEUROINFECTION". Ukrainian Scientific Medical Youth Journal 103, n.º 4 (11 de dezembro de 2017): 26–31. http://dx.doi.org/10.32345/usmyj.4(103).2017.26-31.
Texto completo da fonteChanpong, Atchariya, Osvaldo Borrelli e Nikhil Thapar. "The Potential Role of Microorganisms on Enteric Nervous System Development and Disease". Biomolecules 13, n.º 3 (27 de fevereiro de 2023): 447. http://dx.doi.org/10.3390/biom13030447.
Texto completo da fonteZhu, Jianping, Lanlan Chang, Jinlu Xie e Hongbin Ai. "Arginine Vasopressin Injected into the Dorsal Motor Nucleus of the Vagus Inhibits Gastric Motility in Rats". Gastroenterology Research and Practice 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/4618672.
Texto completo da fonteIpatov, Andrey A., e Maria G. Ipatova. "Management of functional gastrointestinal disorders in children. Focus on restoring intestinal microenvironment and motility". Meditsinskiy sovet = Medical Council, n.º 1 (21 de março de 2021): 125–32. http://dx.doi.org/10.21518/2079-701x-2021-1-125-132.
Texto completo da fonteSchicho, Rudolf, e Martin Storr. "Alternative Targets Within the Endocannabinoid System for Future Treatment of Gastrointestinal Diseases". Canadian Journal of Gastroenterology 25, n.º 7 (2011): 377–83. http://dx.doi.org/10.1155/2011/953975.
Texto completo da fonteHe, Xin, Jing Yang, Ling Qiu, Dan Feng, Feng Ju, Lu Tan, Yu-Zhi Li et al. "Thiodiketopiperazines Produced by Penicillium crustosum and Their Activities to Promote Gastrointestinal Motility". Molecules 24, n.º 2 (15 de janeiro de 2019): 299. http://dx.doi.org/10.3390/molecules24020299.
Texto completo da fonteMontoro-Huguet, Miguel A. "Dietary and Nutritional Support in Gastrointestinal Diseases of the Upper Gastrointestinal Tract (I): Esophagus". Nutrients 14, n.º 22 (14 de novembro de 2022): 4819. http://dx.doi.org/10.3390/nu14224819.
Texto completo da fonteRomański, KW. "Importance of the enteric nervous system in the control of the migrating motility complex". Physiology International 104, n.º 2 (junho de 2017): 97–129. http://dx.doi.org/10.1556/2060.104.2017.2.4.
Texto completo da fonteAlcala-Gonzalez, L., A. Guillen-Del-Castillo, A. Marin, L. Comas, C. Codina, I. Blazquez, J. Corada, C. Malagelada e C. P. Simeon Aznar. "POS1312 PREVALENCE OF GASTROINTESTINAL SYMPTOMS AND OBJECTIVE GASTROINTESTINAL DYSMOTILITY IN PATIENTS WITH SYSTEMIC SCLEROSIS". Annals of the Rheumatic Diseases 82, Suppl 1 (30 de maio de 2023): 1005.1–1006. http://dx.doi.org/10.1136/annrheumdis-2023-eular.2605.
Texto completo da fonteNedelska, S. M., I. V. Samokhin, O. V. Kriazhev, D. O. Yartseva, T. H. Bessikalo e L. I. Kliatska. "Functional disorders of the gastrointestinal tract in children of different age groups (a literature review)". Zaporozhye Medical Journal 26, n.º 1 (5 de fevereiro de 2024): 66–71. http://dx.doi.org/10.14739/2310-1210.2024.1.290950.
Texto completo da fonteMarathe, Chinmay S., Christopher K. Rayner, Karen L. Jones e Michael Horowitz. "Effects of GLP-1 and Incretin-Based Therapies on Gastrointestinal Motor Function". Experimental Diabetes Research 2011 (2011): 1–10. http://dx.doi.org/10.1155/2011/279530.
Texto completo da fonteGonzalez, Zorisadday, Daniel Herlihy, Cong Phan, Jesus Diaz, Kenneth Dominguez e Richard McCallum. "Alcohol and gastric motility: pathophysiological and therapeutic implications". Journal of Investigative Medicine 68, n.º 5 (23 de maio de 2020): 965–71. http://dx.doi.org/10.1136/jim-2020-001327.
Texto completo da fonteBernabè, Giulia, Mahmoud Elsayed Mosaad Shalata, Veronica Zatta, Massimo Bellato, Andrea Porzionato, Ignazio Castagliuolo e Paola Brun. "Antibiotic Treatment Induces Long-Lasting Effects on Gut Microbiota and the Enteric Nervous System in Mice". Antibiotics 12, n.º 6 (1 de junho de 2023): 1000. http://dx.doi.org/10.3390/antibiotics12061000.
Texto completo da fonteSchonkeren, Simone L., Meike S. Thijssen, Nathalie Vaes, Werend Boesmans e Veerle Melotte. "The Emerging Role of Nerves and Glia in Colorectal Cancer". Cancers 13, n.º 1 (5 de janeiro de 2021): 152. http://dx.doi.org/10.3390/cancers13010152.
Texto completo da fonteTougas, Gervais. "The Autonomic Nervous System in Functional Bowel Disorders". Canadian Journal of Gastroenterology 13, suppl a (1999): 15A—17A. http://dx.doi.org/10.1155/1999/707105.
Texto completo da fonteYILDIZELİ TOPÇU, Sacide, Duygu SOYDAŞ e Doğan ALBAYRAK. "Monitoring Food Images After Rectal Surgery To Accelerate Recovery Of Postoperative Bowel Motility: A Quasi-Experimental Study". Sakarya Üniversitesi Holistik Sağlık Dergisi 6, n.º 3 (30 de dezembro de 2023): 438–49. http://dx.doi.org/10.54803/sauhsd.1233040.
Texto completo da fonteIwasaki, Mari, Yasutada Akiba e Jonathan D. Kaunitz. "Recent advances in vasoactive intestinal peptide physiology and pathophysiology: focus on the gastrointestinal system". F1000Research 8 (12 de setembro de 2019): 1629. http://dx.doi.org/10.12688/f1000research.18039.1.
Texto completo da fonteJiang, Yanyan, Tanja Babic e R. Alberto Travagli. "Sex differences in GABAergic neurotransmission to rat DMV neurons". American Journal of Physiology-Gastrointestinal and Liver Physiology 317, n.º 4 (1 de outubro de 2019): G476—G483. http://dx.doi.org/10.1152/ajpgi.00112.2019.
Texto completo da fonte