Literatura científica selecionada sobre o tema "Gas generation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Gas generation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Gas generation"
Devine, K. "Gas in Electricity Generation". Energy Exploration & Exploitation 13, n.º 2-3 (maio de 1995): 149–57. http://dx.doi.org/10.1177/0144598795013002-305.
Texto completo da fonteGiunta, G., R. Vernazza, R. Salerno, A. Ceppi, G. Ercolani e M. Mancini. "Hourly weather forecasts for gas turbine power generation". Meteorologische Zeitschrift 26, n.º 3 (14 de junho de 2017): 307–17. http://dx.doi.org/10.1127/metz/2017/0791.
Texto completo da fonteTAKATA, Kazumasa, Keizo TSUKAGOSHI, Junichiro MASADA e Eisaku ITO. "A102 DEVELOPMENT OF ADVANCED TECHNOLOGIES FOR THE NEXT GENERATION GAS TURBINE(Gas Turbine-1)". Proceedings of the International Conference on Power Engineering (ICOPE) 2009.1 (2009): _1–29_—_1–34_. http://dx.doi.org/10.1299/jsmeicope.2009.1._1-29_.
Texto completo da fonteSaitoh, Keijiro, Eisaku Ito, Koichi Nishida, Satoshi Tanimura e Keizo Tsukagoshi. "A105 DEVELOPMENT OF COMBUSTOR WITH EXHAUST GAS RECIRCULATION SYSTEM FOR THE NEXT GENERATION GAS TURBINE(Gas Turbine-2)". Proceedings of the International Conference on Power Engineering (ICOPE) 2009.1 (2009): _1–47_—_1–52_. http://dx.doi.org/10.1299/jsmeicope.2009.1._1-47_.
Texto completo da fonteMoring, Frederick. "LDCs and distributed generation developments". Natural Gas 17, n.º 3 (10 de janeiro de 2007): 30–32. http://dx.doi.org/10.1002/gas.3410170307.
Texto completo da fonteBurnby, M. W. "Gas for electricity generation". Power Engineering Journal 7, n.º 6 (1993): 236. http://dx.doi.org/10.1049/pe:19930061.
Texto completo da fonteVickers, Frank. "Gas marketing opportunities in electric power generation". Natural Gas 13, n.º 7 (9 de janeiro de 2007): 13–17. http://dx.doi.org/10.1002/gas.3410130704.
Texto completo da fonteSmith, William H. "Distributed electric generation to increase gas markets". Natural Gas 17, n.º 2 (10 de janeiro de 2007): 29–32. http://dx.doi.org/10.1002/gas.3410170208.
Texto completo da fonteAweh, Amanda. "Enabling the Next Generation Smart Grid". Climate and Energy 38, n.º 2 (10 de agosto de 2021): 20–23. http://dx.doi.org/10.1002/gas.22247.
Texto completo da fonteChapman, Bruce R. "Pricing Distributed Generation: Challenges and Alternatives". Natural Gas & Electricity 33, n.º 8 (15 de fevereiro de 2017): 1–7. http://dx.doi.org/10.1002/gas.21965.
Texto completo da fonteTeses / dissertações sobre o assunto "Gas generation"
Lee, Hi Sun. "Spray generation by gas-lift pumps". Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61897.
Texto completo da fonteOpseth, Douglas A. "Landfill gas generation at a semi-arid landfill". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq39150.pdf.
Texto completo da fonteWitty, Susan Jean. "Sound generation by gas flow through corrugated pipes". Thesis, University of Hull, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.395653.
Texto completo da fonteEccles, Neil C. "Structured grid generation for gas turbine combustion systems". Thesis, Loughborough University, 2000. https://dspace.lboro.ac.uk/2134/7348.
Texto completo da fontePapadopoulos, Tilemachos. "Gas turbine cycles for intermediate load power generation". Thesis, Cranfield University, 2005. http://dspace.lib.cranfield.ac.uk/handle/1826/10718.
Texto completo da fonteUvwie, Patrick Awaciere. "Nigeria's gas flaring reduction : economic viability of power generation using flared gas / P.A. Uvwie". Thesis, North-West University, 2008. http://hdl.handle.net/10394/3697.
Texto completo da fonteHayko, Robert Kory. "Systems approach to natural gas analysis for power generation". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ30858.pdf.
Texto completo da fonteTsoutsanis, Elias. "Performance adaptation of gas turbines for power generation applications". Thesis, Cranfield University, 2010. http://dspace.lib.cranfield.ac.uk/handle/1826/5614.
Texto completo da fonteGrilli, Roberto. "Methods for Trace Gas Detection Using Difference Frequency Generation". Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.520211.
Texto completo da fonteAVELLAR, VINICIUS PIMENTA DE. "TRANSIENT MODELLING OF INDUSTRIAL GAS TURBINE FOR POWER GENERATION". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2010. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=16332@1.
Texto completo da fonteAs turbinas a gás são equipamentos de vital importância para o setor industrial, fornecendo trabalho e calor para diversos setores, do transporte aos sistemas de cogeração. A crescente necessidade de geração de energia elétrica confiável tem incentivado o projeto de turbinas a gás industriais, inclusive no Brasil, que operam com vários combustíveis como o diesel, gás natural, álcool e de combustíveis de baixo poder calorífico. Para melhor monitorar e controlar estes motores, uma análise completa da previsão de funcionamento em regime transitório é necessária. Durante o regime transitório das turbinas a gás industriais (heavy-duty), o sistema de controle deve manter os limites de certos parâmetros, tais como a temperatura na entrada da turbina e a velocidade de rotação do eixo, no seu valor nominal. Além disso, o tempo de resposta necessário para o sistema de controle atuar deve ser o mais breve possível para garantir uma operação de qualidade, segura e confiável. A temperatura de entrada da turbina, que é um parâmetro muito importante no desempenho de uma turbina a gás, é limitada pela resistência mecânica do material das pás da turbina. A velocidade de rotação do eixo deve permanecer constante, devido à ligação ao sistema elétrico, que não pode suportar altas flutuações de freqüência. Este trabalho tem como motivação o incremento da capacidade de simulação de um modelo computacional existente, incorporando, para este fim, rotinas de sistemas de controle. Como resultado, o novo modelo é capaz de simular qualquer condição de funcionamento de turbinas a gás industriais, em regime permanente e transitório controlado. Os resultados obtidos pelo programa computacional se mostraram fiéis ao comportamento real da máquina. Além disso, mostraram a flexibilidade do modelo ao lidar com diferentes condições de operação.Um programa computacional capaz de simular o desempenho transitório controlado de turbinas a gás é de extrema relevância para o desenvolvimento de softwares que auxiliam os operadores destes equipamentos. Dentre estes, estão os sistemas de monitoramento e diagnóstico dos equipamentos em questão.
Gas turbine engines are a vital part of today’s industry, providing both work and heat for several industry sectors, from transportation to cogeneration systems. The growing need for reliable electricity has encouraged the design of stationary gas turbines, including in Brazil, which operates on multiple fuels such as diesel, natural gas and low calorific fuels. To better monitor and control these engines, a complete analysis for prediction of transient operation is required. During transient operation of heavy duty gas turbines, the control system must keep the limits of certain parameters, such as turbine inlet temperature (TIT) and the rotational shaft speed within their design range. Moreover, the time required for the control system to react should be as short as possible to guarantee a safe and reliable operation. The turbine inlet temperature, which is a very important parameter in the performance of a gas turbine, is limited by the turbine blades material mechanical resistance. Furthermore, the rotational speed should remain constant due to the electric grid connection, which cannot withstand high frequency fluctuations. This work is motivated by the need to increase the ability of a computer model to simulate the performance of industrial gas turbines, incorporating, for this purpose, control system routines. As a result, the new model will be able to simulate any operating condition of industrial gas turbines, in both steady state and transient. The results obtained by the computer program proved to be faithful to the actual behavior of the engine. Furthermore, they showed the flexibility of the model to deal with different operating conditions. A computer program capable of simulating the transient performance of gas turbines is very important for the development softwares to help operators of such equipment. In addition, it could be used in on-line intelligent diagnostic program.
Livros sobre o assunto "Gas generation"
L, Reynolds Thomas, e NASA Glenn Research Center, eds. Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) study. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Encontre o texto completo da fonteJames, Newcomb, e Cambridge Energy Research Associates, eds. Generation gap: U.S. natural gas and electric power in the 1990s. Cambridge, MA (Charles Square, 20 University Rd., Cambridge 02138): Cambridge Energy Research Associates, 1991.
Encontre o texto completo da fonteBoard, Canada National Energy, ed. Natural gas for power generation: Issues and implications. Calgary: National Energy Board, 2006.
Encontre o texto completo da fonteM, Spencer A., ed. Generation, accumulation, and production of Europe's hydrocarbons III. Berlin: Springer-Verlag, 1993.
Encontre o texto completo da fonteVladislav, Sadykov, ed. Syngas generation from hydrocarbons and oxygenates with structured catalysts. Hauppauge, N.Y: Nova Science Publishers, 2009.
Encontre o texto completo da fonteMadhlopa, Amos. Principles of Solar Gas Turbines for Electricity Generation. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-68388-1.
Texto completo da fonteChen, M. J. Generation systems software: Steam, gas and diesel plant. London: Chapman & Hall, 1996.
Encontre o texto completo da fonteGreenspan, Donald. The generation of turbulence in a compressed gas. Arlington, Tex: University of Texas at Arlington, Dept. of Mathematics, 1997.
Encontre o texto completo da fonteM, Spencer A., ed. Generation, accumulation, and production of Europe's hydrocarbons II. Berlin: Springer-Verlag, 1992.
Encontre o texto completo da fonte1948-, Lewan M. D., e Geological Survey (U.S.), eds. Comparison of kinetic-model predictions of deep gas generation. [Reston, Va.?]: U.S. Dept. of the Interior, U.S. Geological Survey, 1999.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Gas generation"
Zakharov, Y. N. "Mathematical Modeling of Gas Generation in Underground Gas Generator". In Communications in Computer and Information Science, 218–27. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12203-4_22.
Texto completo da fonteChen, M. J., M. Buamud e D. M. Grant. "Gas turbine-generator program manual". In Generation Systems Software, 76–101. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1191-1_6.
Texto completo da fonteBarlaz, Morton A., e Robert K. Ham. "Leachate and gas generation". In Geotechnical Practice for Waste Disposal, 113–36. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-3070-1_6.
Texto completo da fonteCôme, Guy-Marie. "Generation of Reaction Mechanisms". In Gas-Phase Thermal Reactions, 201–23. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9805-7_10.
Texto completo da fonteSchulenberg, Thomas. "Gas-Cooled Fast Reactors". In The fourth generation of nuclear reactors, 135–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-64919-0_8.
Texto completo da fonteHiller, W. J., e J. Hägele. "Generation of High-Speed Aerosol Beams By Laval Nozzles". In Rarefied Gas Dynamics, 1235–43. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2467-6_55.
Texto completo da fonteHeszler, Peter, Lars Landström e Claes-Göran Grangvist. "Basics of UV Laser-Assisted Generation of Nanoparticles". In Gas Phase Nanoparticle Synthesis, 69–122. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2444-3_4.
Texto completo da fonteTaylor, J'tia P. "Generation-IV Gas-Cooled Fast Reactor". In Nuclear Energy Encyclopedia, 349–51. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118043493.ch29.
Texto completo da fonteLiu, Kun, Daifen Chen, Serhiy Serbin e Volodymyr Patlaichuk. "Power Generation Market for Gas Turbines". In Gas Turbines Structural Properties, Operation Principles and Design Features, 3–9. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0977-3_1.
Texto completo da fonteAyala, R. E. "Application of IGCC Technology to Power Generation". In Desulfurization of Hot Coal Gas, 75–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58977-5_5.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Gas generation"
Sato, T., S. Aoki e H. Mori. "A Gas Turbine Interactive Design System — TDSYS — for Advanced Gas Turbines". In 1985 Joint Power Generation Conference: GT Papers. American Society of Mechanical Engineers, 1985. http://dx.doi.org/10.1115/85-jpgc-gt-11.
Texto completo da fonteStillman, Arnold. "Signal generation in gas detectors". In Beam Instrumentation Workshop. AIP, 1994. http://dx.doi.org/10.1063/1.46990.
Texto completo da fonteRutledge, Chris. "Monitoring Gas Generation in Transformers". In 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D). IEEE, 2018. http://dx.doi.org/10.1109/tdc.2018.8440249.
Texto completo da fonteBanister, Mark. "Photo Reactive Gas Generation System". In 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-4501.
Texto completo da fonteAchitaev, Andrei A., Stanislav A. Eroshenko, Anastasia G. Rusina, Alexey A. Zhidkov e Pavel N. Evseenkov. "Landfill Gas Generation Projects Implementation". In 2020 Ural Smart Energy Conference (USEC). IEEE, 2020. http://dx.doi.org/10.1109/usec50097.2020.9281152.
Texto completo da fonteLothe, Per, e Nils Kristian Stroem. "Pressurized Natural Gas-Next-Generation Marine Gas Transport Solution". In Offshore Technology Conference. Offshore Technology Conference, 2007. http://dx.doi.org/10.4043/18630-ms.
Texto completo da fonteLi, Nathan, Lei Tao, James McSpiritt, Eric M. Jackson, Chadwick L. Canedy, Charles D. Merritt, Mijin Kim et al. "Resonant cavity infrared detectors for scalable gas sensing". In Next-Generation Spectroscopic Technologies XV, editado por Richard A. Crocombe e Luisa T. M. Profeta. SPIE, 2023. http://dx.doi.org/10.1117/12.2662739.
Texto completo da fonteChen, Shin-Juh, Nicholas F. Aubut, Michael B. Frish, Kevin Bendele, Paul D. Wehnert e Vineet Aggarwal. "Versatile advanced mobile natural gas leak detection system". In Next-Generation Spectroscopic Technologies XV, editado por Richard A. Crocombe e Luisa T. M. Profeta. SPIE, 2023. http://dx.doi.org/10.1117/12.2663631.
Texto completo da fonteWilkes, Colin. "Statistical Determination of Natural Gas Superheat Requirements". In 2002 International Joint Power Generation Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ijpgc2002-26036.
Texto completo da fonteSanjay, Onkar Singh e B. N. Prasad. "Thermodynamic Performance of Complex Gas Turbine Cycles". In 2002 International Joint Power Generation Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ijpgc2002-26109.
Texto completo da fonteRelatórios de organizações sobre o assunto "Gas generation"
Frank S. Felicione, Steven M. Frank e Dennis D. Keiser. WIPP Gas-Generation Experiments. Office of Scientific and Technical Information (OSTI), maio de 2007. http://dx.doi.org/10.2172/920400.
Texto completo da fontePerson, J. C. Grout gas generation test plan. Office of Scientific and Technical Information (OSTI), janeiro de 1995. http://dx.doi.org/10.2172/10116469.
Texto completo da fonteZACH, J. J. The Chemistry of Flammable Gas Generation. Office of Scientific and Technical Information (OSTI), outubro de 2000. http://dx.doi.org/10.2172/805379.
Texto completo da fonteZACH, J. J. The Chemistry of Flammable Gas Generation. Office of Scientific and Technical Information (OSTI), setembro de 2001. http://dx.doi.org/10.2172/807324.
Texto completo da fonteHolmes, Matthew David, e Gary Robert Parker. Gas Generation of Heated PBX 9502. Office of Scientific and Technical Information (OSTI), outubro de 2016. http://dx.doi.org/10.2172/1329835.
Texto completo da fonteJonah, C. D., S. Kapoor, M. S. Matheson, W. A. Mulac e D. Meisel. Gas generation from Hanford grout samples. Office of Scientific and Technical Information (OSTI), março de 1996. http://dx.doi.org/10.2172/205643.
Texto completo da fonteDeb, Kaushik. Gas Demand Growth Beyond Power Generation. King Abdullah Petroleum Studies and Research Center, maio de 2019. http://dx.doi.org/10.30573/ks--2019-dp62.
Texto completo da fonteBenjamin C. Wiant, Ihor S. Diakunchak, Dennis A. Horazak e Harry T. Morehead. NEXT GENERATION GAS TURBINE SYSTEMS STUDY. Office of Scientific and Technical Information (OSTI), março de 2003. http://dx.doi.org/10.2172/828625.
Texto completo da fonteGeorge Bailey, Elizabeth Bluhm, John Lyman, Richard Mason, Mark Paffett, Gary Polansky, G. D. Roberson, Martin Sherman, Kirk Veirs e Laura Worl. Gas Generation from Actinide Oxide Materials. Office of Scientific and Technical Information (OSTI), dezembro de 2000. http://dx.doi.org/10.2172/775827.
Texto completo da fonteUnknown. NEXT GENERATION GAS TURBINE (NGGT) SYSTEMS STUDY. Office of Scientific and Technical Information (OSTI), dezembro de 2001. http://dx.doi.org/10.2172/791498.
Texto completo da fonte