Literatura científica selecionada sobre o tema "Gallium nitride"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Gallium nitride".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Gallium nitride"
Sarkar, Sujoy, e S. Sampath. "Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control". Chemical Communications 52, n.º 38 (2016): 6407–10. http://dx.doi.org/10.1039/c6cc02487d.
Texto completo da fonteDobrynin, A. V., M. M. Sletov e V. V. Smirnov. "Luminescent properties of gallium nitride and gallium-aluminum nitride". Journal of Applied Spectroscopy 55, n.º 5 (novembro de 1991): 1169–71. http://dx.doi.org/10.1007/bf00658419.
Texto completo da fonteAl-Zuhairi, Omar, Ahmad Shuhaimi, Nafarizal Nayan, Adreen Azman, Anas Kamarudzaman, Omar Alobaidi, Mustafa Ghanim, Estabraq T. Abdullah e Yong Zhu. "Non-Polar Gallium Nitride for Photodetection Applications: A Systematic Review". Coatings 12, n.º 2 (18 de fevereiro de 2022): 275. http://dx.doi.org/10.3390/coatings12020275.
Texto completo da fonteRajan, Siddharth, e Debdeep Jena. "Gallium nitride electronics". Semiconductor Science and Technology 28, n.º 7 (21 de junho de 2013): 070301. http://dx.doi.org/10.1088/0268-1242/28/7/070301.
Texto completo da fonteKochuev, D. A., A. S. Chernikov, R. V. Chkalov, A. V. Prokhorov e K. S. Khorkov. "Deposition of GaN nanoparticles on the surface of a copper film under the action of electrostatic field during the femtosecond laser ablation synthesis in ammonia environment". Journal of Physics: Conference Series 2131, n.º 5 (1 de dezembro de 2021): 052089. http://dx.doi.org/10.1088/1742-6596/2131/5/052089.
Texto completo da fonteMendes, Marco, Jeffrey Sercel, Mathew Hannon, Cristian Porneala, Xiangyang Song, Jie Fu e Rouzbeh Sarrafi. "Advanced Laser Scribing for Emerging LED Materials". Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2011, DPC (1 de janeiro de 2011): 001443–71. http://dx.doi.org/10.4071/2011dpc-wa32.
Texto completo da fonteMcLaurin, M., B. Haskell, S. Nakamura e J. S. Speck. "Gallium adsorption onto (112̄0) gallium nitride surfaces". Journal of Applied Physics 96, n.º 1 (julho de 2004): 327–34. http://dx.doi.org/10.1063/1.1759086.
Texto completo da fonteAssali, Lucy V. C., W. V. M. Machado e João F. Justo. "Manganese Impurity in Boron Nitride and Gallium Nitride". Materials Science Forum 483-485 (maio de 2005): 1047–50. http://dx.doi.org/10.4028/www.scientific.net/msf.483-485.1047.
Texto completo da fonteKang, Liping, Lingli Wang, Haiyan Wang, Xiaodong Zhang e Yongqiang Wang. "Preparation and Performance of Gallium Nitride Powders with Preferred Orientation". MATEC Web of Conferences 142 (2018): 01009. http://dx.doi.org/10.1051/matecconf/201814201009.
Texto completo da fonteVolcheck, V. S., M. S. Baranava e V. R. Stempitsky. "Thermal conductivity of wurtzite gallium nitride". Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series 67, n.º 3 (8 de outubro de 2022): 285–97. http://dx.doi.org/10.29235/1561-8358-2022-67-3-285-297.
Texto completo da fonteTeses / dissertações sobre o assunto "Gallium nitride"
Li, Ting. "Gallium nitride and aluminum gallium nitride-based ultraviolet photodetectors /". Digital version accessible at:, 2000. http://wwwlib.umi.com/cr/utexas/main.
Texto completo da fonteMuensit, Supasarote. "Piezoelectric coefficients of gallium arsenide, gallium nitride and aluminium nitride". Phd thesis, Australia : Macquarie University, 1999. http://hdl.handle.net/1959.14/36187.
Texto completo da fonteThesis (PhD)--Macquarie University, School of Mathematics, Physics, Computing and Electronics, 1999.
Includes bibliographical references.
Introduction -- A Michelson interferometer for measurement of piezoelectric coefficients -- The piezoelectric coefficient of gallium arsenide -- Extensional piezoelectric coefficients of gallium nitrides and aluminium nitride -- Shear piezoelectric coefficients of gallium nitride and aluminium nitride -- Electrostriction in gallium nitride, aluminium nitride and gallium arsenide -- Summary and prognosis.
The present work represents the first use of the interferometric technique for determining the magnitude and sign of the piezoelectric coefficients of III-V compound semiconductors, in particular gallium arsenide (GaAs), gallium nitride (GaN), and aluminium nitride (AIN). The interferometer arrangement used in the present work was a Michelson interferometer, with the capability of achieving a resolution of 10⁻¹³ m. -- The samples used were of two types. The first were commercial wafers, with single crystal orientation. Both GaAs and GaN were obtained in this form. The second type of sample was polycrystalline thin films, grown in the semiconductor research laboratories at Macquarie University. GaN and AIN samples of this type were obtained. -- The d₁₄ coefficient of GaAs was measured by first measuring the d₃₃ value of a [111] oriented sample. This was then transformed to give the d₁₄ coefficient of the usual [001] oriented crystal. The value obtained for d₁₄ was (-2.7 ± 0.1) pmV⁻¹. This compares well with the most recent reported measurements of -2.69 pmV⁻¹. The significance of the measurement is that this represents the first time this coefficient has been measured using the inverse piezoelectric effect. -- For AIN and GaN samples, the present work also represents the first time their piezoelectric coefficients have been measured by interferometry. For GaN, this work presents the first reported measurements of the piezoelectric coefficients, and some of these results have recently been published by the (Muensit and Guy, 1998). The d₃₃ and d₃₁ coefficients for GaN were found to be (3.4 ± 0.1) pmV⁻¹ and (-1.7 ± 0.1) pmV⁻¹ respectively. Since these values were measured on a single crystal wafer and have been corrected for substrate clamping, the values should be a good measure of the true piezoelectric coefficients for bulk GaN. -- For AIN, the d₃₃ and d₃₁ coefficients were found to be (5.1 ± 0.2) pmV⁻¹, and (-2.6 ± 0.1) pmV⁻¹ respectively. Since these figures are measured on a polycrystalline sample it is quite probable that the values for bulk AIN would be somewhat higher.
The piezoelectric measurements indicate that the positive c axis in the nitride films points away from the substrate. The piezoelectric measurements provide a simple means for identifying the positive c axis direction. -- The interferometric technique has also been used to measure the shear piezoelectric coefficient d₁₅ for AIN and GaN. This work represents the first application of this technique to measure this particular coefficient. The d₁₅ coefficients for AIN and GaN were found to be (-3.6 ± 0.1) pmV⁻¹ and (-3.1 ± 0.1) pmV⁻¹ respectively. The value for AIN agrees reasonably well with the only reported value available in the literature of -4.08 pmV⁻¹. The value of this coefficient for GaN has not been measured. -- Some initial investigations into the phenomenon of electrostriction in the compound semiconductors were also performed. It appears that these materials have both a piezoelectric response and a significant electrostrictive response. For the polycrystalline GaN and AIN, the values of the M₃₃ coefficients are of the order of 10⁻¹⁸ m²V⁻². The commercial single crystal GaN and GaAs wafers display an asymmetric response which cannot be explained.
Mode of access: World Wide Web.
Various pagings ill
Mareš, Petr. "Depozice Ga a GaN nanostruktur na křemíkový a grafenový substrát". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231443.
Texto completo da fonteCheng, Chung-choi, e 鄭仲材. "Positron beam studies of fluorine implanted gallium nitride and aluminium gallium nitride". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43278577.
Texto completo da fonteCheng, Chung-choi. "Positron beam studies of fluorine implanted gallium nitride and aluminium gallium nitride". Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43278577.
Texto completo da fontePopa, Laura C. "Gallium nitride MEMS resonators". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99296.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (pages 187-206).
As a wide band-gap semiconductor, with large breakdown fields and saturation velocities, Gallium Nitride (GaN) has been increasingly used in high-power, high-frequency electronics and monolithic microwave integrated circuits (MMICs). At the same time, GaN also has excellent electromechanical properties, such as high acoustic velocities and low elastic losses. Together with a strong piezoelectric coupling, these qualities make GaN ideal for RF MEMS resonators. Hence, GaN technology offers a platform for the seamless integration of low-loss, piezoelectric RF MEMS resonators with high power, high frequency electronics. Monolithic integration of MEMS resonators with ICs would lead to reduced parasitics and matching constraints, enabling high-purity clocks and frequency-selective filters for signal processing and high-frequency wireless communications. This thesis highlights the physics and resonator design considerations that must be taken into account in a monolithically integrated solution. We then show devices that achieve the highest frequency-quality factor product in GaN resonators to date (1.56 x 1013). We also highlight several unique transduction mechanisms enabled by this technology, such as the ability to use the 2D electron gas (2DEG) channel of High Electron Mobility Transistors (HEMTs) as an electrode for transduction. This enables a unique out-of-line switching capability which allowed us to demonstrate the first DC switchable solid-state piezoelectric resonator. Finally, we discuss the benefits of using active HEMT sensing of the mechanical signal when scaling to GHz frequencies, which enabled the highest frequency lithographically defined resonance reported to date in GaN (3.5 GHz). These demonstrated features sh
by Laura C. Popa.
Ph. D.
Allums, Kimberly K. "Proton radiation and thermal stabilty [sic] of gallium nitride and gallium nitride devices". [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0013123.
Texto completo da fonteHolmes, Kenneth L. "Two-dimensional modeling of aluminum gallium nitride/gallium nitride high electron mobility transistor". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2002. http://library.nps.navy.mil/uhtbin/hyperion-image/02Jun%5FHolmes.pdf.
Texto completo da fonteAnderson, David Richard. "Phonon-limited electron transport in gallium nitride and gallium nitride-based heterostructures, 1760-1851". Thesis, University of York, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270104.
Texto completo da fonteJackson, Helen C. "Effect of variation of silicon nitride passivation layer on electron irradiated aluminum gallium nitride/gallium nitride HEMT structures". Thesis, Air Force Institute of Technology, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3629786.
Texto completo da fonteSilicon nitride passivation on AlGaN\GaN heterojunction devices can improve performance by reducing electron traps at the surface. This research studies the effect of displacement damage caused by 1 MeV electron irradiation as a function of the variation of passivation layer thickness and heterostructure layer variation on AlGaN/GaN HEMTs. The effects of passivation layer thickness are investigated at thicknesses of 0, 20, 50 and 120 nanometers on AlGaN\GaN test structures with either an AlN nucleation layer or a GaN cap structures which are then measured before and immediately after 1.0 MeV electron irradiation at fluences of 1016 cm-2. Hall system measurements are used to observe changes in mobility, carrier concentration and conductivity as a function of Si3N4 thickness. Models are developed that relate the device structure and passivation layer under 1 MeV radiation to the observed changes to the measured photoluminescence and deep level transient spectroscopy. A software model is developed to determine the production rate of defects from primary 1 MeV electrons that can be used for other energies and materials. The presence of either a 50 or 120 nm Si 3N4 passivation layer preserves the channel current for both and appears to be optimal for radiation hardness.
Livros sobre o assunto "Gallium nitride"
1922-, Pankove Jacques I., e Moustakas T. D, eds. Gallium nitride (GaN). San Diego: Academic Press, 1998.
Encontre o texto completo da fonte1922-, Pankove Jacques I., Moustakas T. D e Willardson Robert K, eds. Gallium nitride (GaN) II. San Diego: Academic Press, 1999.
Encontre o texto completo da fonteFeenstra, Randall M., e Colin E. C. Wood, eds. Porous Silicon Carbide and Gallium Nitride. Chichester, UK: John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/9780470751817.
Texto completo da fonteEhrentraut, Dirk, Elke Meissner e Michal Bockowski, eds. Technology of Gallium Nitride Crystal Growth. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-04830-2.
Texto completo da fonteB, Gil, ed. Low-dimensional nitride semiconductors. Oxford: Oxford University Press, 2002.
Encontre o texto completo da fonteMichael, Shur, e Davis Robert F. 1942-, eds. GaN-based materials and devices: Growth, fabrication, characterization and performance. Singapore: World Scientific, 2004.
Encontre o texto completo da fonteInternational Conference on Nitride Semiconductors (4th 2001 Denver, Colo.). ICNS-4: Fourth International Conference on Nitride Semiconductors, Denver, Colorado, USA, 2001 : proceedings. Berlin: Wiley-VCH, 2002.
Encontre o texto completo da fonteChuan, Feng Zhe, ed. III-nitride devices and nanoengineering. London: Imperial College Press, 2008.
Encontre o texto completo da fonteVserossiĭskoe soveshchanie "Nitridy gallii︠a︡, indii︠a︡ i ali︠u︡minii︠a︡--struktury i pribory" (2nd 1998 St. Petersburg, Russia). Nitridy gallii︠a︡, indii︠a︡ i ali︠u︡minii︠a︡--struktury i pribory: Materialy 2-go vserossiĭskogo soveshchanii︠a︡, 2 ii︠u︡nii︠a︡ 1998 g., Sankt-Peterburgskiĭ gosudarstvennyĭ tekhnicheskiĭ universitet = Gallium nitride, indium nitride, aluminum nitride--structures and devices : technical digest : the 2nd Russian Workshop, June 2, 1998, St.-Petersburg State Technical University. Sankt-Peterburg: Sankt-Peterburgskiĭ gos. tekhn. universitet, 1998.
Encontre o texto completo da fonteConference on Semiconducting and Insulating Materials (9th 1996 Toulouse, France). Semiconducting and insulating materials 1996: Proceedings of the 9th Conference on Semiconducting and Insulating Materials (SIMC'9), April 29/May 3, 1996, Toulouse, France. New York: Institute of Electrical and Electronics Engineers, 1996.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Gallium nitride"
Linares, R. C., e R. M. Ware. "Gallium Nitride". In Inorganic Reactions and Methods, 202. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145227.ch146.
Texto completo da fonteDi Paolo Emilio, Maurizio. "Gallium Nitride". In GaN and SiC Power Devices, 35–47. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-50654-3_4.
Texto completo da fonteSchoonmaker, Richard C., Claudia E. Burton, J. Lundstrom e J. L. Margrave. "Gallium (III) Nitride". In Inorganic Syntheses, 16–18. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470132388.ch5.
Texto completo da fonteBin, Dong. "9 The Packaging Technologies for GaN HEMTs". In Gallium Nitride Power Devices, 261–80. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315196626-10.
Texto completo da fonteFeenstra, R. M., e S. W. Hla. "2.3.7 GaN, Gallium Nitride". In Physics of Solid Surfaces, 52–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47736-6_24.
Texto completo da fonteKinski, Isabel, e Paul F. McMillan. "Gallium Nitride and Oxonitrides". In Ceramics Science and Technology, 91–130. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631735.ch3.
Texto completo da fonteKinski, Isabel, e Paul F. McMillan. "Gallium Nitride and Oxonitrides". In Ceramics Science and Technology, 91–130. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527631940.ch15.
Texto completo da fonteChowdhury, Srabanti. "Vertical Gallium Nitride Technology". In Power Electronics and Power Systems, 101–21. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43199-4_5.
Texto completo da fonteKhandelwal, Sourabh. "Gallium Nitride Semiconductor Devices". In Advanced SPICE Model for GaN HEMTs (ASM-HEMT), 1–8. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77730-2_1.
Texto completo da fonteBehzad, Somayeh. "Two-Dimensional Gallium Nitride". In 21st Century Nanoscience – A Handbook, 7–1. Boca Raton, Florida : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429347290-7.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Gallium nitride"
Wu, Tsung Han, Zhe Chuan Feng, Fangfei Li, Chung Cherng Lin, Ian Ferguson, Ray Hua Horng, Weijie Lu, P. M. Champion e L. D. Ziegler. "Brillouin scattering studies of gallium nitride and Indium gallium nitride". In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482346.
Texto completo da fontePraharaj, C. Jayant. "Gallium Nitride/ Boron Nitride/ Aluminum Gallium Nitride E-Mode High Electron Mobility Transistor Modeling". In 2023 1st International Conference on Circuits, Power and Intelligent Systems (CCPIS). IEEE, 2023. http://dx.doi.org/10.1109/ccpis59145.2023.10291344.
Texto completo da fonteMcGinn, Christine, Qingyuan Zeng, Keith Behrman, Vikrant Kumar e Ioannis Kymissis. "Fully transparent gallium nitride/indium gallium nitride LED as a position sensitive detector". In Gallium Nitride Materials and Devices XIX, editado por Hadis Morkoç, Hiroshi Fujioka e Ulrich T. Schwarz. SPIE, 2024. http://dx.doi.org/10.1117/12.2692143.
Texto completo da fonteMartin, Kevin N. "European gallium nitride capability". In 2015 IEEE International Radar Conference (RadarCon). IEEE, 2015. http://dx.doi.org/10.1109/radar.2015.7131004.
Texto completo da fonteLi, Changyi, Antonio Hurtado, Jeremy B. Wright, Huiwen Xu, Sheng Liu, Ting S. Luk, Igal Brener, Steven R. Brueck e George T. Wang. "Gallium Nitride Nanotube Lasers". In CLEO: Science and Innovations. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/cleo_si.2014.sw1g.3.
Texto completo da fonteSakr, Salam, Maria Tchernycheva, Juliette Mangeney, Elias Warde, Nathalie Isac, Lorenzo Rigutti, Raffaele Colombelli et al. "III-nitride intersubband photonics". In Gallium Nitride Materials and Devices VII. SPIE, 2012. http://dx.doi.org/10.1117/12.900002.
Texto completo da fonteDavis, R. F., S. M. Bishop, S. Mita, R. Collazo, Z. J. Reitmeier e Z. Sitar. "Epitaxial Growth Of Gallium Nitride". In PERSPECTIVES ON INORGANIC, ORGANIC, AND BIOLOGICAL CRYSTAL GROWTH: FROM FUNDAMENTALS TO APPLICATIONS: Basedon the lectures presented at the 13th International Summer School on Crystal Growth. AIP, 2007. http://dx.doi.org/10.1063/1.2751931.
Texto completo da fonteStassen, E., M. Pu, E. Semenova, E. Zavarin, W. Lundin e K. Yvind. "Highly Nonlinear Gallium Nitride Waveguides". In CLEO: Science and Innovations. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_si.2018.sth3i.1.
Texto completo da fonteGauthier, Briere, e Patrice Genevet. "Gallium nitride free standing metasurfaces". In 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8086612.
Texto completo da fonteSui, Jingyang, e Pei-Cheng Ku. "Gallium Nitride Based Tactile Sensors". In CLEO: Applications and Technology. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/cleo_at.2017.atu1a.6.
Texto completo da fonteRelatórios de organizações sobre o assunto "Gallium nitride"
Harris, J. S. Bulk Gallium Nitride Growth. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1998. http://dx.doi.org/10.21236/ada353635.
Texto completo da fonteHeikman, Sten J., e Umesh K. Mishra. System for Bulk Growth of Gallium Nitride. Vapor Phase Epitaxy of Gallium Nitride by Gallium Arc Evaporation. Fort Belvoir, VA: Defense Technical Information Center, março de 2005. http://dx.doi.org/10.21236/ada464611.
Texto completo da fonteSkowronski, M. Deposition of Gallium Nitride Epilayers by OMVPE. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1998. http://dx.doi.org/10.21236/ada337316.
Texto completo da fonteJones, Kenneth A., Randy P. Tompkins, Michael A. Derenge, Kevin W. Kirchner, Iskander G. Batyrev e Shuai Zhou. Gallium Nitride (GaN) High Power Electronics (FY11). Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2012. http://dx.doi.org/10.21236/ada556955.
Texto completo da fonteAllen, N. Gallium Nitride Superjunction Transistor: Continued Funding Report. Office of Scientific and Technical Information (OSTI), setembro de 2022. http://dx.doi.org/10.2172/1890078.
Texto completo da fonteMitchell, Christine Charlotte. Defect reduction in gallium nitride using cantilever epitaxy. Office of Scientific and Technical Information (OSTI), agosto de 2003. http://dx.doi.org/10.2172/918286.
Texto completo da fontePenn, John, Sami Hawasli, Khamsouk Kingkeo e Ali Darwish. Gallium Nitride (GAN) RF Challenge; BAE Design Testing. Aberdeen Proving Ground, MD: DEVCOM Army Research Laboratory, setembro de 2021. http://dx.doi.org/10.21236/ad1148108.
Texto completo da fonteHarris, H. M., J. Laskar e S. Nuttinck. Engineering Support for High Power Density Gallium Nitride Microwave Transistors. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2001. http://dx.doi.org/10.21236/ada397860.
Texto completo da fonteMcHugo, S. A., J. Krueger e C. Kisielowski. Metallic impurities in gallium nitride grown by molecular beam epitaxy. Office of Scientific and Technical Information (OSTI), abril de 1997. http://dx.doi.org/10.2172/603696.
Texto completo da fonteHite, Jennifer, Mark Twigg, Michael Mastro, Jr Freitas, Meyer Jaime, Vurgaftman Jerry, O'Connor Igor et al. Development of Periodically Oriented Gallium Nitride for Non-linear Optics. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2012. http://dx.doi.org/10.21236/ada563315.
Texto completo da fonte