Artigos de revistas sobre o tema "Gac/Rsm pathway"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 41 melhores artigos de revistas para estudos sobre o assunto "Gac/Rsm pathway".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Takeuchi, Kasumi, Kosumi Yamada e Dieter Haas. "ppGpp Controlled by the Gac/Rsm Regulatory Pathway Sustains Biocontrol Activity in Pseudomonas fluorescens CHA0". Molecular Plant-Microbe Interactions® 25, n.º 11 (novembro de 2012): 1440–49. http://dx.doi.org/10.1094/mpmi-02-12-0034-r.
Texto completo da fonteTakeuchi, Kasumi. "GABA, A Primary Metabolite Controlled by the Gac/Rsm Regulatory Pathway, Favors a Planktonic Over a Biofilm Lifestyle in Pseudomonas protegens CHA0". Molecular Plant-Microbe Interactions® 31, n.º 2 (fevereiro de 2018): 274–82. http://dx.doi.org/10.1094/mpmi-05-17-0120-r.
Texto completo da fontePanijel, Mary, Laura Chalupowicz, Guido Sessa, Shulamit Manulis-Sasson e Isaac Barash. "Global Regulatory Networks Control the Hrp Regulon of the Gall-Forming Bacterium Pantoea agglomerans pv. gypsophilae". Molecular Plant-Microbe Interactions® 26, n.º 9 (setembro de 2013): 1031–43. http://dx.doi.org/10.1094/mpmi-04-13-0097-r.
Texto completo da fonteZha, Daiming, Li Xu, Houjin Zhang e Yunjun Yan. "The Two-Component GacS-GacA System ActivateslipATranslation by RsmE but Not RsmA in Pseudomonas protegens Pf-5". Applied and Environmental Microbiology 80, n.º 21 (15 de agosto de 2014): 6627–37. http://dx.doi.org/10.1128/aem.02184-14.
Texto completo da fonteLin, Qiqi, Jiahui Huang, Zhiqing Liu, Qunyi Chen, Xinbo Wang, Guohui Yu, Ping Cheng, Lian-Hui Zhang e Zeling Xu. "tRNA modification enzyme MiaB connects environmental cues to activation of Pseudomonas aeruginosa type III secretion system". PLOS Pathogens 18, n.º 12 (5 de dezembro de 2022): e1011027. http://dx.doi.org/10.1371/journal.ppat.1011027.
Texto completo da fonteAnderson, Anne J., Beom Ryong Kang e Young Cheol Kim. "The Gac/Rsm Signaling Pathway of a Biocontrol Bacterium, Pseudomonas chlororaphis O6". Research in Plant Disease 23, n.º 3 (30 de setembro de 2017): 212–27. http://dx.doi.org/10.5423/rpd.2017.23.3.212.
Texto completo da fonteValverde, Claudio. "Artificial sRNAs activating the Gac/Rsm signal transduction pathway in Pseudomonas fluorescens". Archives of Microbiology 191, n.º 4 (13 de fevereiro de 2009): 349–59. http://dx.doi.org/10.1007/s00203-009-0459-x.
Texto completo da fonteZhang, Wei, Zhao Zhao, Bo Zhang, Xiao-Gang Wu, Zheng-Guang Ren e Li-Qun Zhang. "Posttranscriptional Regulation of 2,4-Diacetylphloroglucinol Production by GidA and TrmE in Pseudomonas fluorescens 2P24". Applied and Environmental Microbiology 80, n.º 13 (18 de abril de 2014): 3972–81. http://dx.doi.org/10.1128/aem.00455-14.
Texto completo da fonteLatour, Xavier. "The Evanescent GacS Signal". Microorganisms 8, n.º 11 (6 de novembro de 2020): 1746. http://dx.doi.org/10.3390/microorganisms8111746.
Texto completo da fonteTAKEUCHI, K. "Turning the Gac/Rsm signal transduction pathway on and off in plant protecting bacteria." Japanese Journal of Phytopathology 81, n.º 2 (2015): 105–10. http://dx.doi.org/10.3186/jjphytopath.81.105.
Texto completo da fonteTakeuchi, Kasumi, Wataru Tsuchiya, Naomi Noda, Rintaro Suzuki, Toshimasa Yamazaki e Dieter Haas. "Lon protease negatively affects GacA protein stability and expression of the Gac/Rsm signal transduction pathway inPseudomonas protegens". Environmental Microbiology 16, n.º 8 (18 de fevereiro de 2014): 2538–49. http://dx.doi.org/10.1111/1462-2920.12394.
Texto completo da fonteLapouge, Karine, Elena Sineva, Magnus Lindell, Katja Starke, Carol S. Baker, Paul Babitzke e Dieter Haas. "Mechanism of hcnA mRNA recognition in the Gac/Rsm signal transduction pathway of Pseudomonas fluorescens". Molecular Microbiology 66, n.º 2 (14 de setembro de 2007): 341–56. http://dx.doi.org/10.1111/j.1365-2958.2007.05909.x.
Texto completo da fonteLapouge, Karine, Mario Schubert, Frédéric H. T. Allain e Dieter Haas. "Gac/Rsm signal transduction pathway of γ-proteobacteria: from RNA recognition to regulation of social behaviour". Molecular Microbiology 67, n.º 2 (30 de novembro de 2007): 241–53. http://dx.doi.org/10.1111/j.1365-2958.2007.06042.x.
Texto completo da fontePérez-Martínez, Isabel, e Dieter Haas. "Azithromycin Inhibits Expression of the GacA-Dependent Small RNAs RsmY and RsmZ in Pseudomonas aeruginosa". Antimicrobial Agents and Chemotherapy 55, n.º 7 (2 de maio de 2011): 3399–405. http://dx.doi.org/10.1128/aac.01801-10.
Texto completo da fonteWang, Dongping, Sung‐Hee Lee, Candace Seeve, Jun Myoung Yu, Leland S. Pierson e Elizabeth A. Pierson. "Roles of the Gac‐Rsm pathway in the regulation of phenazine biosynthesis in P seudomonas chlororaphis 30‐84". MicrobiologyOpen 2, n.º 3 (21 de abril de 2013): 505–24. http://dx.doi.org/10.1002/mbo3.90.
Texto completo da fonteFerreiro, María-Dolores, Joaquina Nogales, Gabriela A. Farias, Adela Olmedilla, Juan Sanjuán e María Trinidad Gallegos. "Multiple CsrA Proteins Control Key Virulence Traits in Pseudomonas syringae pv. tomato DC3000". Molecular Plant-Microbe Interactions® 31, n.º 5 (maio de 2018): 525–36. http://dx.doi.org/10.1094/mpmi-09-17-0232-r.
Texto completo da fonteBhagirath, Anjali Y., Deepti Somayajula, Yanqi Li e Kangmin Duan. "CmpX Affects Virulence in Pseudomonas aeruginosa Through the Gac/Rsm Signaling Pathway and by Modulating c-di-GMP Levels". Journal of Membrane Biology 251, n.º 1 (23 de outubro de 2017): 35–49. http://dx.doi.org/10.1007/s00232-017-9994-6.
Texto completo da fonteDubuis, Christophe, Joëlle Rolli, Matthias Lutz, Geneviève Défago e Dieter Haas. "Thiamine-Auxotrophic Mutants of Pseudomonas fluorescens CHA0 Are Defective in Cell-Cell Signaling and Biocontrol Factor Expression". Applied and Environmental Microbiology 72, n.º 4 (abril de 2006): 2606–13. http://dx.doi.org/10.1128/aem.72.4.2606-2613.2006.
Texto completo da fonteKong, Hye Suk, Daniel P. Roberts, Cheryl D. Patterson, Sarah A. Kuehne, Stephan Heeb, Dilip K. Lakshman e John Lydon. "Effect of Overexpressing rsmA from Pseudomonas aeruginosa on Virulence of Select Phytotoxin-Producing Strains of P. syringae". Phytopathology® 102, n.º 6 (junho de 2012): 575–87. http://dx.doi.org/10.1094/phyto-09-11-0267.
Texto completo da fonteYang, Shihui, Qiu Zhang, Jianhua Guo, Amy O. Charkowski, Bernard R. Glick, A. Mark Ibekwe, Donald A. Cooksey e Ching-Hong Yang. "Global Effect of Indole-3-Acetic Acid Biosynthesis on Multiple Virulence Factors of Erwinia chrysanthemi 3937". Applied and Environmental Microbiology 73, n.º 4 (22 de dezembro de 2006): 1079–88. http://dx.doi.org/10.1128/aem.01770-06.
Texto completo da fonteHumair, B�r�nice, Birgit Wackwitz e Dieter Haas. "GacA-Controlled Activation of Promoters for Small RNA Genes in Pseudomonas fluorescens". Applied and Environmental Microbiology 76, n.º 5 (4 de janeiro de 2010): 1497–506. http://dx.doi.org/10.1128/aem.02014-09.
Texto completo da fonteYang, Shihui, Quan Peng, Qiu Zhang, Xuan Yi, Chang Jae Choi, Ralph M. Reedy, Amy O. Charkowski e Ching-Hong Yang. "Dynamic Regulation of GacA in Type III Secretion, Pectinase Gene Expression, Pellicle Formation, and Pathogenicity of Dickeya dadantii (Erwinia chrysanthemi 3937)". Molecular Plant-Microbe Interactions® 21, n.º 1 (janeiro de 2008): 133–42. http://dx.doi.org/10.1094/mpmi-21-1-0133.
Texto completo da fonteMartínez-Granero, Francisco, Ana Navazo, Emma Barahona, Miguel Redondo-Nieto, Rafael Rivilla e Marta Martín. "The Gac-Rsm and SadB Signal Transduction Pathways Converge on AlgU to Downregulate Motility in Pseudomonas fluorescens". PLoS ONE 7, n.º 2 (20 de fevereiro de 2012): e31765. http://dx.doi.org/10.1371/journal.pone.0031765.
Texto completo da fonteValente, Rita S., e Karina B. Xavier. "The Trk Potassium Transporter Is Required for RsmB-Mediated Activation of Virulence in the Phytopathogen Pectobacterium wasabiae". Journal of Bacteriology 198, n.º 2 (19 de outubro de 2015): 248–55. http://dx.doi.org/10.1128/jb.00569-15.
Texto completo da fonteDadashi, Maryam, Lin Chen, Ahmad Nasimian, Saeid Ghavami e Kangmin Duan. "Putative RNA Ligase RtcB Affects the Switch between T6SS and T3SS in Pseudomonas aeruginosa". International Journal of Molecular Sciences 22, n.º 22 (22 de novembro de 2021): 12561. http://dx.doi.org/10.3390/ijms222212561.
Texto completo da fonteAndrawes, Natalie, Ziva Weissman, Mariel Pinsky, Shilat Moshe, Judith Berman e Daniel Kornitzer. "Regulation of heme utilization and homeostasis in Candida albicans". PLOS Genetics 18, n.º 9 (9 de setembro de 2022): e1010390. http://dx.doi.org/10.1371/journal.pgen.1010390.
Texto completo da fonteTang, Mengjie, Guanghui Zhao, Muhammad Awais, Xiaoli Gao, Wenyong Meng, Jindi Lin, Bianbian Zhao, Zhongxiong Lai, Yuling Lin e Yukun Chen. "Genome-Wide Identification and Expression Analysis Reveals the B3 Superfamily Involved in Embryogenesis and Hormone Responses in Dimocarpus longan Lour." International Journal of Molecular Sciences 25, n.º 1 (21 de dezembro de 2023): 127. http://dx.doi.org/10.3390/ijms25010127.
Texto completo da fontePastora, Alexander B., Kara M. Rzasa e George A. O’Toole. "Multiple pathways impact the swarming motility of Pseudomonas fluorescens Pf0-1". Microbiology Spectrum, 30 de abril de 2024. http://dx.doi.org/10.1128/spectrum.00166-24.
Texto completo da fonteFerreiro, María‐Dolores, e María‐Trinidad Gallegos. "Distinctive features of the Gac‐Rsm pathway in plant‐associated Pseudomonas". Environmental Microbiology, 13 de junho de 2021. http://dx.doi.org/10.1111/1462-2920.15558.
Texto completo da fonteJiao, Hongying, Fan Li, Tietao Wang, Joey Kuok Hoong Yam, Liang Yang e Haihua Liang. "The Pyocin Regulator PrtR Regulates Virulence Expression of Pseudomonas aeruginosa by Modulation of Gac/Rsm System and c-di-GMP Signaling Pathway". Infection and Immunity, 9 de novembro de 2020. http://dx.doi.org/10.1128/iai.00602-20.
Texto completo da fonteDong, Qiuling, Qing Yan, Bo Zhang, Li-qun Zhang e Xiaogang Wu. "Effect of the Monothiol Glutaredoxin GrxD on 2,4-Diacetylphloroglucinol Biosynthesis and Biocontrol Activity of Pseudomonas fluorescens 2P24". Frontiers in Microbiology 13 (8 de julho de 2022). http://dx.doi.org/10.3389/fmicb.2022.920793.
Texto completo da fontePastora, Alexander B., e George A. O’Toole. "The regulator FleQ both transcriptionally and post-transcriptionally regulates the level of RTX adhesins of Pseudomonas fluorescens". Journal of Bacteriology, setembro de 2023. http://dx.doi.org/10.1128/jb.00152-23.
Texto completo da fonteLeRoux, Michele, Robin L. Kirkpatrick, Elena I. Montauti, Bao Q. Tran, S. Brook Peterson, Brittany N. Harding, John C. Whitney et al. "Kin cell lysis is a danger signal that activates antibacterial pathways of Pseudomonas aeruginosa". eLife 4 (2 de fevereiro de 2015). http://dx.doi.org/10.7554/elife.05701.
Texto completo da fonteTakeuchi, Kasumi, Wataru Tsuchiya, Zui Fujimoto, Kosumi Yamada, Nobutaka Someya e Toshimasa Yamazaki. "Discovery of an Antibiotic-Related Small Protein of Biocontrol Strain Pseudomonas sp. Os17 by a Genome-Mining Strategy". Frontiers in Microbiology 11 (26 de novembro de 2020). http://dx.doi.org/10.3389/fmicb.2020.605705.
Texto completo da fonteLi, Kewei, Guangjian Yang, Alexander B. Debru, Pingping Li, Li Zong, Peizhen Li, Teng Xu, Weihui Wu, Shouguang Jin e Qiyu Bao. "SuhB Regulates the Motile-Sessile Switch in Pseudomonas aeruginosa through the Gac/Rsm Pathway and c-di-GMP Signaling". Frontiers in Microbiology 8 (8 de junho de 2017). http://dx.doi.org/10.3389/fmicb.2017.01045.
Texto completo da fonteTing, See-Yeun, Kaitlyn D. LaCourse, Hannah E. Ledvina, Rutan Zhang, Matthew C. Radey, Hemantha D. Kulasekara, Rahul Somavanshi et al. "Discovery of coordinately regulated pathways that provide innate protection against interbacterial antagonism". eLife 11 (17 de fevereiro de 2022). http://dx.doi.org/10.7554/elife.74658.
Texto completo da fonteValente, Rita S., Pol Nadal-Jimenez, André F. P. Carvalho, Filipe J. D. Vieira e Karina B. Xavier. "Signal Integration in Quorum Sensing Enables Cross-Species Induction of Virulence in Pectobacterium wasabiae". mBio 8, n.º 3 (23 de maio de 2017). http://dx.doi.org/10.1128/mbio.00398-17.
Texto completo da fonteLiang, Fei, Bo Zhang, Qingqing Yang, Yang Zhang, Dehong Zheng, Li-qun Zhang, Qing Yan e Xiaogang Wu. "Cyclic-di-GMP Regulates the Quorum-Sensing System and Biocontrol Activity of Pseudomonas fluorescens 2P24 through the RsmA and RsmE Proteins". Applied and Environmental Microbiology 86, n.º 24 (9 de outubro de 2020). http://dx.doi.org/10.1128/aem.02016-20.
Texto completo da fonteLópez-Pliego, Liliana, Norarizbeth Lara-Flores, Dalia Molina-Romero, Gabriela May-Compañ, Ricardo Carreño-López, Cinthia E. Núñez e Miguel Castañeda. "The GacS/A-Rsm Pathway Positively Regulates Motility and Flagella Synthesis in Azotobacter vinelandii". Current Microbiology 79, n.º 1 (14 de dezembro de 2021). http://dx.doi.org/10.1007/s00284-021-02695-3.
Texto completo da fonteTang, Mengjie, Xiaoli Gao, Wenyong Meng, Jindi Lin, Guanghui Zhao, Zhongxiong Lai, Yuling Lin e Yukun Chen. "Transcription factors NF-YB involved in embryogenesis and hormones responses in Dimocarpus Longan Lour". Frontiers in Plant Science 14 (21 de setembro de 2023). http://dx.doi.org/10.3389/fpls.2023.1255436.
Texto completo da fonteDatta, Sanjana, Asmita Gajbhiye e Shailendra Patil. "2468-1873/XX $65.00+.00 © XXXX Bentham Science Publishers Pegylated Chitosan Biodegradable Nanoparticles Delivery of Salvia officinalis and Melissa officinalis for Enhanced Brain Targeting". Current Nanomedicine 13 (24 de outubro de 2023). http://dx.doi.org/10.2174/0124681873259506231015050850.
Texto completo da fonte