Artigos de revistas sobre o tema "Furanic acid"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Furanic acid".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Margellou, Antigoni G., Stylianos A. Torofias, Georgios Iakovou e Konstantinos S. Triantafyllidis. "Valorization of Chlorella Microalgae Residual Biomass via Catalytic Acid Hydrolysis/Dehydration and Hydrogenolysis/Hydrogenation". Catalysts 14, n.º 5 (23 de abril de 2024): 286. http://dx.doi.org/10.3390/catal14050286.
Texto completo da fonteMarshall, Adam, Bo Jiang, Régis M. Gauvin e Christophe M. Thomas. "2,5-Furandicarboxylic Acid: An Intriguing Precursor for Monomer and Polymer Synthesis". Molecules 27, n.º 13 (24 de junho de 2022): 4071. http://dx.doi.org/10.3390/molecules27134071.
Texto completo da fonteAntunes, Margarida M., Andreia F. Silva, Carolina D. Bernardino, Auguste Fernandes, Filipa Ribeiro e Anabela A. Valente. "Catalytic Transfer Hydrogenation and Acid Reactions of Furfural and 5-(Hydroxymethyl)furfural over Hf-TUD-1 Type Catalysts". Molecules 26, n.º 23 (27 de novembro de 2021): 7203. http://dx.doi.org/10.3390/molecules26237203.
Texto completo da fonteKlushin, V. A., U. A. Chus e Nina Smirnova. "Synthesis of Furanic Polyamides and Composite Coatings from Plant Biomass". Key Engineering Materials 816 (agosto de 2019): 84–89. http://dx.doi.org/10.4028/www.scientific.net/kem.816.84.
Texto completo da fonteZhang, Bengang, Mathieu Petrissans, Anelie Petrissans, Antonio Pizzi e Baptiste Colin. "Furanic Polymerization Causes the Change, Conservation and Recovery of Thermally-Treated Wood Hydrophobicity before and after Moist Conditions Exposure". Polymers 15, n.º 1 (31 de dezembro de 2022): 221. http://dx.doi.org/10.3390/polym15010221.
Texto completo da fonteGumidyala, Abhishek, Bin Wang e Steven Crossley. "Direct carbon-carbon coupling of furanics with acetic acid over Brønsted zeolites". Science Advances 2, n.º 9 (setembro de 2016): e1601072. http://dx.doi.org/10.1126/sciadv.1601072.
Texto completo da fonteSalis, Severyn, Nadia Spano, Marco Ciulu, Ignazio Floris, Maria I. Pilo e Gavino Sanna. "Electrochemical Determination of the “Furanic Index” in Honey". Molecules 26, n.º 14 (6 de julho de 2021): 4115. http://dx.doi.org/10.3390/molecules26144115.
Texto completo da fonteHolewinski, Adam. "Electro-Oxidative Valorization of Biomass-Derived Furanics". ECS Meeting Abstracts MA2023-02, n.º 27 (22 de dezembro de 2023): 1428. http://dx.doi.org/10.1149/ma2023-02271428mtgabs.
Texto completo da fonteLuo, Kaiju, Yan Wang, Junrong Yu, Jing Zhu e Zuming Hu. "Semi-bio-based aromatic polyamides from 2,5-furandicarboxylic acid: toward high-performance polymers from renewable resources". RSC Advances 6, n.º 90 (2016): 87013–20. http://dx.doi.org/10.1039/c6ra15797a.
Texto completo da fonteZhao, Deyang, Frederic Delbecq e Christophe Len. "One-Pot FDCA Diester Synthesis from Mucic Acid and Their Solvent-Free Regioselective Polytransesterification for Production of Glycerol-Based Furanic Polyesters". Molecules 24, n.º 6 (15 de março de 2019): 1030. http://dx.doi.org/10.3390/molecules24061030.
Texto completo da fonteAbdel-Rahman, Mohamed Ali, Saad El-Din Hassan, Amr Fouda, Ahmed A. Radwan, Mohammed G. Barghoth e Salha G. Desouky. "Evaluating the Effect of Lignocellulose-Derived Microbial Inhibitors on the Growth and Lactic Acid Production by Bacillus coagulans Azu-10". Fermentation 7, n.º 1 (27 de janeiro de 2021): 17. http://dx.doi.org/10.3390/fermentation7010017.
Texto completo da fonteKriechbaum, Ricarda, Oliver Spadiut e Julian Kopp. "Bioconversion of Furanic Compounds by Chlorella vulgaris—Unveiling Biotechnological Potentials". Microorganisms 12, n.º 6 (18 de junho de 2024): 1222. http://dx.doi.org/10.3390/microorganisms12061222.
Texto completo da fonteEckardt, Jonas, Thomas Sepperer, Emanuele Cesprini, Primož Šket e Gianluca Tondi. "Comparing Condensed and Hydrolysable Tannins for Mechanical Foaming of Furanic Foams: Synthesis and Characterization". Molecules 28, n.º 6 (20 de março de 2023): 2799. http://dx.doi.org/10.3390/molecules28062799.
Texto completo da fonteVinod, Nivedha, e Saikat Dutta. "Energy Densification of Biomass-Derived Furfurals to Furanic Biofuels by Catalytic Hydrogenation and Hydrodeoxygenation Reactions". Sustainable Chemistry 2, n.º 3 (16 de setembro de 2021): 521–49. http://dx.doi.org/10.3390/suschem2030029.
Texto completo da fonteAzadeh, Elham, Ummi Hani Abdullah, Nurul Basirah Md Ali, Antonio Pizzi, Christine Gerardin-Charbonnier, Philippe Gerardin, Wan Sarah Samiun e Siti Efliza Ashari. "Development of Water Repellent, Non-Friable Tannin-Furanic-Fatty Acids Biofoams". Polymers 14, n.º 22 (19 de novembro de 2022): 5025. http://dx.doi.org/10.3390/polym14225025.
Texto completo da fonteMALLARI, JOHN GODWIN A., e RONNIEL D. MANALO. "Production and characterization of furanic bio-oil from Kawayan kiling (Bambusa vulgaris Schrad ex. Wendl) using molten citric acid in an open system". TAPPI Journal 23, n.º 8 (28 de agosto de 2024): 419–29. http://dx.doi.org/10.32964/tj23.8.419.
Texto completo da fonteXi, Xuedong, Antonio Pizzi, Hong Lei, Guanben Du, Xiaojian Zhou e Yuying Lin. "Characterization and Preparation of Furanic-Glyoxal Foams". Polymers 12, n.º 3 (20 de março de 2020): 692. http://dx.doi.org/10.3390/polym12030692.
Texto completo da fonteScapin, Elisandra, e Guenther Carlos Couto Viana. "SYNTHESIS OF 5-HYDROXYMETHYLFURFURAL USING IONIC LIQUID [BMIM][BR] FROM RESIDUAL SOYBEAN AND RICE BIOMASSES". DESAFIOS - Revista Interdisciplinar da Universidade Federal do Tocantins 5, Especial (31 de outubro de 2018): 125–32. http://dx.doi.org/10.20873/uft.2359-3652.2018vol5nespecialp125.
Texto completo da fonteBorrega, Marc, Klaus Niemelä e Herbert Sixta. "Effect of hydrothermal treatment intensity on the formation of degradation products from birchwood". Holzforschung 67, n.º 8 (1 de dezembro de 2013): 871–79. http://dx.doi.org/10.1515/hf-2013-0019.
Texto completo da fonteChen, Xinyi, Antonio Pizzi, Hisham Essawy, Emmanuel Fredon, Christine Gerardin, Nathanael Guigo e Nicolas Sbirrazzuoli. "Non-Furanic Humins-Based Non-Isocyanate Polyurethane (NIPU) Thermoset Wood Adhesives". Polymers 13, n.º 3 (25 de janeiro de 2021): 372. http://dx.doi.org/10.3390/polym13030372.
Texto completo da fontePerestrelo, Rosa, Michael Caldeira, Freddy Rodrigues, Jorge A. M. Pereira e José S. Câmara. "DLLμE/GC-MS as a Powerful Analytical Approach to Establish the Volatilomic Composition of Different Whiskeys". Beverages 8, n.º 3 (1 de setembro de 2022): 53. http://dx.doi.org/10.3390/beverages8030053.
Texto completo da fonteEspinosa-Mansilla, A., A. Muñoz Dela Peña e F. Salinas. "Semiautomatic Determination of Furanic Aldehydes in Food and Pharmaceutical Samples by a Stopped-Flow Injection Analysis Method". Journal of AOAC INTERNATIONAL 76, n.º 6 (1 de novembro de 1993): 1255–61. http://dx.doi.org/10.1093/jaoac/76.6.1255.
Texto completo da fonteNeves, Patrícia, Margarida M. Antunes, Patrícia A. Russo, Joana P. Abrantes, Sérgio Lima, Auguste Fernandes, Martyn Pillinger, Sílvia M. Rocha, Maria F. Ribeiro e Anabela A. Valente. "Production of biomass-derived furanic ethers and levulinate esters using heterogeneous acid catalysts". Green Chemistry 15, n.º 12 (2013): 3367. http://dx.doi.org/10.1039/c3gc41908h.
Texto completo da fonteKrämer, B. K., A. Pickert, C. Hohmann, H. M. Liebich, G. A. Müller, M. Hablitzel e T. Risler. "In Vivo Clearance and Elimination of Nine Marker Substances during Hemofiltration with Different Membranes". International Journal of Artificial Organs 15, n.º 7 (julho de 1992): 408–12. http://dx.doi.org/10.1177/039139889201500706.
Texto completo da fonteRodríguez-Solana, Raquel, Natacha Coelho, Antonio Santos-Rufo, Sandra Gonçalves, Efrén Pérez-Santín e Anabela Romano. "The Influence of In Vitro Gastrointestinal Digestion on the Chemical Composition and Antioxidant and Enzyme Inhibitory Capacities of Carob Liqueurs Obtained with Different Elaboration Techniques". Antioxidants 8, n.º 11 (16 de novembro de 2019): 563. http://dx.doi.org/10.3390/antiox8110563.
Texto completo da fonteYuan, Jian-Ping, e Feng Chen. "Simultaneous separation and determination of sugars, ascorbic acid and furanic compounds by HPLC—dual detection". Food Chemistry 64, n.º 3 (fevereiro de 1999): 423–27. http://dx.doi.org/10.1016/s0308-8146(98)00091-0.
Texto completo da fonteLima, Sérgio, Margarida M. Antunes, Martyn Pillinger e Anabela A. Valente. "Ionic Liquids as Tools for the Acid-Catalyzed Hydrolysis/Dehydration of Saccharides to Furanic Aldehydes". ChemCatChem 3, n.º 11 (26 de julho de 2011): 1686–706. http://dx.doi.org/10.1002/cctc.201100105.
Texto completo da fonteSchwarz, Mónica, Fabian Weber, Enrique Durán-Guerrero, Remedios Castro, María del Carmen Rodríguez-Dodero, Maria Valme García-Moreno, Peter Winterhalter e Dominico Guillén-Sánchez. "HPLC-DAD-MS and Antioxidant Profile of Fractions from Amontillado Sherry Wine Obtained Using High-Speed Counter-Current Chromatography". Foods 10, n.º 1 (9 de janeiro de 2021): 131. http://dx.doi.org/10.3390/foods10010131.
Texto completo da fonteSchwarz, Mónica, Fabian Weber, Enrique Durán-Guerrero, Remedios Castro, María del Carmen Rodríguez-Dodero, Maria Valme García-Moreno, Peter Winterhalter e Dominico Guillén-Sánchez. "HPLC-DAD-MS and Antioxidant Profile of Fractions from Amontillado Sherry Wine Obtained Using High-Speed Counter-Current Chromatography". Foods 10, n.º 1 (9 de janeiro de 2021): 131. http://dx.doi.org/10.3390/foods10010131.
Texto completo da fonteFei, Xuan, Jinggang Wang, Xiaoqin Zhang, Zhen Jia, Yanhua Jiang e Xiaoqing Liu. "Recent Progress on Bio-Based Polyesters Derived from 2,5-Furandicarbonxylic Acid (FDCA)". Polymers 14, n.º 3 (6 de fevereiro de 2022): 625. http://dx.doi.org/10.3390/polym14030625.
Texto completo da fontePickert, A., A. Bäuerle e H. M. Liebich. "Determination of hippuric acid and furanic acid in serum of dialysis patients and control persons by high-performance liquid chromatography". Journal of Chromatography B: Biomedical Sciences and Applications 495 (janeiro de 1989): 95–104. http://dx.doi.org/10.1016/s0378-4347(00)82612-2.
Texto completo da fonteJiang, Yi, Dina Maniar, Albert J. J. Woortman, Gert O. R. Alberda van Ekenstein e Katja Loos. "Enzymatic Polymerization of Furan-2,5-Dicarboxylic Acid-Based Furanic-Aliphatic Polyamides as Sustainable Alternatives to Polyphthalamides". Biomacromolecules 16, n.º 11 (12 de outubro de 2015): 3674–85. http://dx.doi.org/10.1021/acs.biomac.5b01172.
Texto completo da fonteSommerauer, Grzybek, Elsaesser, Benisek, Sepperer, Dachs, Hüsing, Petutschnigg e Tondi. "Furfuryl Alcohol and Lactic Acid Blends: Homo- or Co-Polymerization?" Polymers 11, n.º 10 (20 de setembro de 2019): 1533. http://dx.doi.org/10.3390/polym11101533.
Texto completo da fonteVinod, Nivedha, e Saikat Dutta. "Production of Alkyl Levulinates from Carbohydrate-Derived Chemical Intermediates Using Phosphotungstic Acid Supported on Humin-Derived Activated Carbon (PTA/HAC) as a Recyclable Heterogeneous Acid Catalyst". Chemistry 5, n.º 2 (6 de abril de 2023): 800–812. http://dx.doi.org/10.3390/chemistry5020057.
Texto completo da fonteKhrisanapant, Prit, Biniam Kebede, Sze Ying Leong e Indrawati Oey. "Effects of Hydrothermal Processing on Volatile and Fatty Acids Profile of Cowpeas (Vigna unguiculata), Chickpeas (Cicer arietinum) and Kidney Beans (Phaseolus vulgaris)". Molecules 27, n.º 23 (24 de novembro de 2022): 8204. http://dx.doi.org/10.3390/molecules27238204.
Texto completo da fonteRodríguez-Félix, Elizabeth, Silvia Contreras-Ramos, Gustavo Davila-Vazquez, Jacobo Rodríguez-Campos e Erika Marino-Marmolejo. "Identification and Quantification of Volatile Compounds Found in Vinasses from Two Different Processes of Tequila Production". Energies 11, n.º 3 (26 de fevereiro de 2018): 490. http://dx.doi.org/10.3390/en11030490.
Texto completo da fonteAntonetti, Claudia, Anna Maria Raspolli Galletti, Domenico Licursi, Sara Fulignati, Nicola Di Fidio, Federica Zanetti, Andrea Monti, Tommaso Tabanelli e Fabrizio Cavani. "Niobium and Zirconium Phosphates as Green and Water-Tolerant Catalysts for the Acid-Catalyzed Valorization of Bio-Based Chemicals and Real Lignocellulosic Biomasses". Catalysts 12, n.º 10 (7 de outubro de 2022): 1189. http://dx.doi.org/10.3390/catal12101189.
Texto completo da fonteLima, Sergio, Margarida M. Antunes, Martyn Pillinger e Anabela A. Valente. "ChemInform Abstract: Ionic Liquids as Tools for the Acid-Catalyzed Hydrolysis/Dehydration of Saccharides to Furanic Aldehydes". ChemInform 43, n.º 12 (23 de fevereiro de 2012): no. http://dx.doi.org/10.1002/chin.201212223.
Texto completo da fonteChen, Xinyi, Nathanael Guigo, Antonio Pizzi, Nicolas Sbirrazzuoli, Bin Li, Emmanuel Fredon e Christine Gerardin. "Ambient Temperature Self-Blowing Tannin-Humins Biofoams". Polymers 12, n.º 11 (17 de novembro de 2020): 2732. http://dx.doi.org/10.3390/polym12112732.
Texto completo da fonteAnjos, Ofélia, Carlos A. L. Antunes, Sheila Oliveira-Alves, Sara Canas e Ilda Caldeira. "Characterisation of Low Molecular Weight Compounds of Strawberry Tree (Arbutus unedo L.) Fruit Spirit Aged with Oak Wood". Fermentation 10, n.º 5 (13 de maio de 2024): 253. http://dx.doi.org/10.3390/fermentation10050253.
Texto completo da fonteKovaleva, Аlla, Raal Ain, Ilina Tetiana, Alina Osmachko, Olga Goryacha, Ludmila Omelyanchik e Oleh Koshovyi. "Carboxylic acids in the flowers of Veronica spicata L. and Veronica incana L." ScienceRise: Pharmaceutical Science, n.º 1(35) (28 de fevereiro de 2022): 37–43. http://dx.doi.org/10.15587/2519-4852.2022.253541.
Texto completo da fonteLi, Hui, e Zheng Fang. "Resourceful Treatment of Dioscorea zingiberensis Wastewater Using a Double-Chamber Microbial Fuel Cell". Advanced Materials Research 602-604 (dezembro de 2012): 1081–85. http://dx.doi.org/10.4028/www.scientific.net/amr.602-604.1081.
Texto completo da fonteLima, Sérgio, Margarida M. Antunes, Auguste Fernandes, Martyn Pillinger, Maria Filipa Ribeiro e Anabela A. Valente. "Acid-Catalysed Conversion of Saccharides into Furanic Aldehydes in the Presence of Three-Dimensional Mesoporous Al-TUD-1". Molecules 15, n.º 6 (28 de maio de 2010): 3863–77. http://dx.doi.org/10.3390/molecules15063863.
Texto completo da fonteAntunes, Margarida M., Sérgio Lima, Auguste Fernandes, Ana L. Magalhães, Patrícia Neves, Carlos M. Silva, Maria F. Ribeiro et al. "MFI Acid Catalysts with Different Crystal Sizes and Porosity for the Conversion of Furanic Compounds in Alcohol Media". ChemCatChem 9, n.º 14 (6 de fevereiro de 2017): 2747–59. http://dx.doi.org/10.1002/cctc.201601236.
Texto completo da fonteMatos, Marina, Andreia F. Sousa, Ana C. Fonseca, Carmen S. R. Freire, Jorge F. J. Coelho e Armando J. D. Silvestre. "A New Generation of Furanic Copolyesters with Enhanced Degradability: Poly(ethylene 2,5-furandicarboxylate)-co-poly(lactic acid) Copolyesters". Macromolecular Chemistry and Physics 215, n.º 22 (25 de junho de 2014): 2175–84. http://dx.doi.org/10.1002/macp.201400175.
Texto completo da fonteGebresillase, Mahlet N., Raghavendra Shavi e Jeong Gil Seo. "A comprehensive investigation of the condensation of furanic platform molecules to C14–C15 fuel precursors over sulfonic acid functionalized silica supports". Green Chemistry 20, n.º 22 (2018): 5133–46. http://dx.doi.org/10.1039/c8gc01953c.
Texto completo da fonteGonzalez, Mabel, Adriana Celis, Marcela Guevara-Suarez, Jorge Molina e Chiara Carazzone. "Yeast Smell Like What They Eat: Analysis of Volatile Organic Compounds of Malassezia furfur in Growth Media Supplemented with Different Lipids". Molecules 24, n.º 3 (24 de janeiro de 2019): 419. http://dx.doi.org/10.3390/molecules24030419.
Texto completo da fonteLi, Xuehui, Bowen Liu, Lulu Zheng, Hisham Essawy, Zhiyan Liu, Can Liu, Xiaojian Zhou e Jun Zhang. "Facile Synthesis of Formaldehyde-Free Bio-Based Thermoset Resins for Fabrication of Highly Efficient Foams". Polymers 14, n.º 23 (25 de novembro de 2022): 5140. http://dx.doi.org/10.3390/polym14235140.
Texto completo da fonteGu, Canshuo, Lungang Chen, Yong Liu, Xinghua Zhang, Jianguo Liu, Qi Zhang, Chenguang Wang e Longlong Ma. "One-pot conversion of biomass-derived levulinic acid to furanic biofuel 2-methyltetrahydrofuran over bimetallic NiCo/γ-Al2O3 catalysts". Molecular Catalysis 524 (maio de 2022): 112317. http://dx.doi.org/10.1016/j.mcat.2022.112317.
Texto completo da fonteRojas-Buzo, Sergio, Pilar García-García e Avelino Corma. "Hf-based metal–organic frameworks as acid–base catalysts for the transformation of biomass-derived furanic compounds into chemicals". Green Chemistry 20, n.º 13 (2018): 3081–91. http://dx.doi.org/10.1039/c8gc00806j.
Texto completo da fonte