Literatura científica selecionada sobre o tema "Functional UltraSound"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Functional UltraSound".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Functional UltraSound"
Shatillo, Artem, Juho Koponen, Tuukka Miettinen, Anna-Mari Karkkainen e Antti Nurmi. "Functional Ultrasound". Genetic Engineering & Biotechnology News 39, n.º 4 (abril de 2019): 52–54. http://dx.doi.org/10.1089/gen.39.04.16.
Texto completo da fonteMontaldo, Gabriel, Alan Urban e Emilie Macé. "Functional Ultrasound Neuroimaging". Annual Review of Neuroscience 45, n.º 1 (8 de julho de 2022): 491–513. http://dx.doi.org/10.1146/annurev-neuro-111020-100706.
Texto completo da fontede Korte, Chris L., e Hendrik H. G. Hansen. "FOCUS: FUNCTIONAL IMAGING - ULTRASOUND". Artery Research 7, n.º 3-4 (2013): 110. http://dx.doi.org/10.1016/j.artres.2013.10.387.
Texto completo da fonteTyler, William J., Yusuf Tufail e Sandipan Pati. "Noninvasive functional neurosurgery using ultrasound". Nature Reviews Neurology 6, n.º 1 (janeiro de 2010): 13–14. http://dx.doi.org/10.1038/nrneurol.2009.211.
Texto completo da fonteGilja, Odd Helge. "Ultrasound in functional GI disorders". Ultrasound in Medicine & Biology 45 (2019): S14—S15. http://dx.doi.org/10.1016/j.ultrasmedbio.2019.07.458.
Texto completo da fonteMartinez de Paz, Jose Maria, e Emilie Macé. "Functional ultrasound imaging: A useful tool for functional connectomics?" NeuroImage 245 (dezembro de 2021): 118722. http://dx.doi.org/10.1016/j.neuroimage.2021.118722.
Texto completo da fonteLin, Yan, Zhi-Yi Chen e Feng Yang. "Ultrasound-Based Multimodal Molecular Imaging and Functional Ultrasound Contrast Agents". Current Pharmaceutical Design 19, n.º 18 (1 de abril de 2013): 3342–51. http://dx.doi.org/10.2174/1381612811319180016.
Texto completo da fonteLin, Yan, Zhi-Yi Chen e Feng Yang. "Ultrasound-Based Multimodal Molecular Imaging and Functional Ultrasound Contrast Agents". Current Pharmaceutical Design 999, n.º 999 (1 de março de 2013): 6–10. http://dx.doi.org/10.2174/13816128113198880008.
Texto completo da fonteMacé, Emilie, Gabriel Montaldo, Ivan Cohen, Michel Baulac, Mathias Fink e Mickael Tanter. "Functional ultrasound imaging of the brain". Nature Methods 8, n.º 8 (3 de julho de 2011): 662–64. http://dx.doi.org/10.1038/nmeth.1641.
Texto completo da fonteRau, Richard, Pieter Kruizinga, Frits Mastik, Markus Belau, Nico de Jong, Johannes G. Bosch, Wolfgang Scheffer e Georg Maret. "3D functional ultrasound imaging of pigeons". NeuroImage 183 (dezembro de 2018): 469–77. http://dx.doi.org/10.1016/j.neuroimage.2018.08.014.
Texto completo da fonteTeses / dissertações sobre o assunto "Functional UltraSound"
Rau, Richard [Verfasser]. "Functional Ultrasound Imaging of the Avian Brain / Richard Rau". Konstanz : Bibliothek der Universität Konstanz, 2018. http://d-nb.info/1163537047/34.
Texto completo da fonteImbault, Marion. "Quantitative and functional ultrafast ultrasound imaging of the human brain". Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC158/document.
Texto completo da fonteThe objective of this thesis was to explore the potential of human brain ultrasound imaging. Anatomy, blood flow and soft tissue stiffness have already been studied with ultrafast ultrasound imaging in humans and validated in several organs, such as, the breast and liver but not yet on the adult brain. The main limitation of transcranial ultrasound imaging is today the very strong skull-induced aberration artefact. Indeed, the bone, due to its composition, does not allow for ultrasound propagation as elsewhere in the human body. Therefore, this thesis was focused on the development of ultrafast ultrasound imaging for the evaluation of soft tissue stiffness and neurofunctional imaging in the adult human brain, during brain surgery to bypass the problem of skull aberration, and on an aberration correction technique for transcranial ultrasound imaging.We first provided several evidence of the benefit of using shear wave elastography during brain surgery. We also presented our new technique for 3D shear wave elastography using a matrix array in order to be able to overcome the limitations of 2D imaging and in particular to reduce the operator dependence.In a second phase, we demonstrated the capability of ultrasound to identify, map and differentiate in depth cortical regions of activation in response to a stimulus, both in awake patients and in anaesthetized patients. We have demonstrated that ultrasound neurofunctional imaging has the potential to become a comprehensive modality of neuroimaging with major benefits for intraoperative use. In a third part, we developed a new sound speed estimation (SSE) technique, based on a three-step technique that estimates the sound speed accurately corresponding to the illuminated medium. This technique was tested in ultrasound phantoms and in vivo in patient’s liver. In both cases, our method was able to find the sound speed corresponding to the medium. We demonstrated that SSE was related to the fat fraction. This analysis led to the conclusion that SSE was able to distinguish a healthy liver from a diseased liver with both biopsy and MRI as gold standard. Combined with the use of the Wood’s formula, we were even able to access a fat fraction measured by non-invasive ultrasound. Finally, by combining the phase, the amplitude and the sound speed estimation, we have developed a new aberration correction algorithm to perform transcranial ultrasound imaging. By performing numerical simulations, we obtained images that faithfully represented the medium (lateral position and depth) and characterized by one resolution and one contrast similar to those obtained with a punctual source in the medium
Brunner, Clément. "Functional ultrasound imaging (fUSi) to assess brain function in physiological and pathological conditions : application to stroke". Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCB123/document.
Texto completo da fonteSince the middle of the 20th century, functional imaging technologies are making an increasing impact on our understanding on brain functions in both physiological and pathological conditions. Even if fMRI is nowadays one of the most used tool for whole brain imaging in pre-clinical and clinical studies, it lacks sufficient spatiotemporal resolution and sensitivity to assess fine brain function and activity. Functional ultrasound imaging (fUSi) has been recently developed and presents a potential to complement fMRI and other existing brain imaging modalities. Contrary to conventional ultrasound using focus beams, fUSi relies on hemodynamic imaging based on ultrasound plane-wave illumination to detect red blood cells movement and velocity in brain micro-vessels. Consequently, the fUSi signal is indirectly related to brain activity and it is therefore important to better understand the mechanisms of the neurovascular coupling linking neural activity and cerebral blood changes. Here again, fUSi may provide relevant information about disease processes in preclinical models but also in humans. First, I will present recent technical developments allowing in vivo fUSi (i) in chronic condition, (ii) in freely moving and behaving rats and (iii) in rodents and human brain capillaries. Second, I will demonstrate how fUSi could provide new insights in brain pathologies such as stroke
Blomley, Martin John Kjolsen. "Ultrasound contrast agents as a tool for quantitative-functional imaging". Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.417930.
Texto completo da fonteGesnik, Marc. "Imagerie fonctionnelle par ultrasons de la rétine et des fonctions visuelles cérébrales". Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLET011/document.
Texto completo da fonteThis thesis focuses on recent improvements in the functional ultrasound imaging (fUS) technique and their applications in the field of ophthalmology. Within the framework of a synergetic project blending waves physics, medical imaging, neuroscience and ophthalmology, fUS was shown to be capable of imaging and studying the visual system of healthy and diseased animals for the purpose of preclinical studies. To tackle these issues, constant upgrades in the fUS technique had to support the preclinical studies.An experimental set-up was built to image the visual pathway in three dimensions with fUS. Using a new imaging facility, fUS was proven to be feasible in real time and at high ultrasound frequencies such as 30 MHz. Interleaved sampling had to be implemented in that case. Furthermore, the a priori knowledge of the vascular cerebral architecture and the Doppler Effect were exploited to spectrally decompose cerebral blood flux and vessels according to their velocities and orientations.Leveraging these improvements, functional ultrasound imaging of rats and non-human primates was performed. Primate retina was imaged with Power Doppler, but proved to be too mobile to be functionally imaged. However, fUS has been performed on rat retina after 30 MHz fUS imaging had been implemented. The rat visual pathway has then been characterised with fUS. Some of its known features where highlighted such as its retinotopic organisation or the time response differences between some of its structures. The same set-up has been leveraged to map the cerebral activity of animal that underwent visual restauration therapies. These tools were then used to map cerebral activity in anesthetized and awake and behaving monkeys. Unique blood volume variations due to unique mistakes were detected. These tools were finally applied to two preclinical trials on a depressive state of the brain vascular contractility. Blood volume and blood velocity changes were highlighted throughout an acute and a chronical study
Upadhyaya, Swati. "Decreasing Error in Functional Hip Joint Center Calculation using Ultrasound Imaging". Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/26125.
Texto completo da fonteSatta, Elena. "The modulation of buckwheat flour techno-functional properties by ultrasound treatment". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Encontre o texto completo da fonteBloch, Susannah Helen. "Ultrasound functional analysis of breast tumours using a microbubble contrast agent". Thesis, Institute of Cancer Research (University Of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399740.
Texto completo da fonteBimbard, Célian. "Accessing the encoding of sounds in the auditory cortex using functional UltraSound". Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEE054.
Texto completo da fonteThe world teems with complex sounds that animals have to interpret in order to survive. To do so, their brain must represent the richness of the sounds' acoustic structure, from simple to high-order features. Understanding how it does it, however, remains filled with challenges. In this thesis, these questions were explored through a new technical prism, namely functional UltraSound imaging (fUSi). First, fUSi was used to investigate with a high fidelity the topographical organization of the auditory system, as well as its connectivity with other brain areas. Second, it provided fundamental clues for our understanding of how natural sounds are encoded in the auditory cortex, and hints at the human particularities for speech processing. Last, it gave us access to non-continuous topographical encoding, with the example of spatial localization. Through these three aspects, we exposed the different spatially organized modules of processing that overlap within a single brain area
O'Sullivan, Jonathan James. "Applications of ultrasound for the functional modification of proteins and submicron emulsion fabrication". Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/6086/.
Texto completo da fonteLivros sobre o assunto "Functional UltraSound"
A, Curry Reva, e Tempkin Betty Bates, eds. Sonography: Introduction to normal structure and function. 2a ed. St Louis: Saunders, 2004.
Encontre o texto completo da fonteZheng, Yong-Ping, e Yongjin Zhou. Sonomyography: Dynamic and Functional Assessment of Muscle Using Ultrasound Imaging. Springer, 2022.
Encontre o texto completo da fonteZheng, Yong-Ping, e Yongjin Zhou. Sonomyography: Dynamic and Functional Assessment of Muscle Using Ultrasound Imaging. Springer Singapore Pte. Limited, 2021.
Encontre o texto completo da fonteLenzi, Andrea, e Andrea M. Isidori. Ultrasound of the Testis for the Andrologist: Morphological and Functional Atlas. Springer, 2018.
Encontre o texto completo da fonteLenzi, Andrea, e Andrea M. Isidori. Ultrasound of the Testis for the Andrologist: Morphological and Functional Atlas. Springer, 2018.
Encontre o texto completo da fonteGardner, Andrew, Grant L. Iverson, Paul van Donkelaar, Philip N. Ainslie e Peter Stanwell. Magnetic Resonance Spectroscopy, Diffusion Tensor Imaging, and Transcranial Doppler Ultrasound Following Sport-Related Concussion. Editado por Ruben Echemendia e Grant L. Iverson. Oxford University Press, 2015. http://dx.doi.org/10.1093/oxfordhb/9780199896585.013.12.
Texto completo da fonteNixdorff, Uwe, Stephan Achenbach, Frank Bengel, Pompillio Faggiano, Sara Fernández, Christian Heiss, Thomas Mengden et al. Imaging in cardiovascular prevention. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199656653.003.0006.
Texto completo da fonteBunker, Tim D. The clinical evaluation of the shoulder. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780199550647.003.004001.
Texto completo da fonteLancellotti, Patrizio, e Bernard Cosyns. The Standard Transthoracic Echo Examination. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198713623.003.0002.
Texto completo da fonteCosyns, Bernard, e Bernard Paelinck. Pericardial disease. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780199599639.003.0021.
Texto completo da fonteCapítulos de livros sobre o assunto "Functional UltraSound"
Chandra Majhi, Kartick, Shrabani De e Rashmi Madhuri. "Ultrasound-Responsive Nanosystems". In Functional Lipid Nanosystems in Cancer, 513–52. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003056997-21.
Texto completo da fonteLohmann, Hubertus, E. Bernd Ringelstein e Stefan Knecht. "Functional Transcranial Doppler Sonography". In Handbook on Neurovascular Ultrasound, 251–60. Basel: KARGER, 2006. http://dx.doi.org/10.1159/000092437.
Texto completo da fonteMichele, Del Zingaro, Rosi Paolo, Luigi Mearini, Elisabetta Nunzi, Rosi Giovanni e Guiggi Paolo. "Functional Ultrasound: Functional Female Echo-Dynamic Study". In Atlas of Ultrasonography in Urology, Andrology, and Nephrology, 451–57. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-40782-1_37.
Texto completo da fonteHasegawa, Junichi. "Abnormal Findings in Ultrasound Examination". In Fetal Morph Functional Diagnosis, 23–35. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8171-7_2.
Texto completo da fonteAbdul-Kareem, Ahmed, Dheeraj Gandhi, Timothy R. Miller, Rao Gullapalli e Elias R. Melhem. "Neurological Applications of Magnetic Resonance-Guided Focused Ultrasound Therapy". In Functional Neuroradiology, 1337–45. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-10909-6_57.
Texto completo da fonteAhmed, Abdul-Kareem, Dheeraj Gandhi, Timothy R. Miller, Rao Gullapalli e Elias R. Melhem. "Correction to: Neurological Applications of Magnetic Resonance-Guided Focused Ultrasound Therapy". In Functional Neuroradiology, C1. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-10909-6_67.
Texto completo da fonteHildebrandt, U. "Ultrasound Anatomy of the Pelvic Floor". In Investigation of Anorectal Functional Disorders, 11–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77402-7_2.
Texto completo da fonteHausken, Trygve, e Odd Helge Gilja. "Functional Ultrasound of the Gastrointestinal Tract". In Ultrasound of the Gastrointestinal Tract, 233–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/174_2012_665.
Texto completo da fontePaladini, Dario, e Paolo Volpe. "Sequential Anatomy and Functional Assessment of the Heart". In Ultrasound of Congenital Fetal Anomalies, 250–71. 3a ed. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003048268-28.
Texto completo da fonteVadikolias, Konstantinos, e Georgios Tsivgoulis. "Applications of Functional Transcranial Doppler (fTCD)". In Cerebrovascular Ultrasound in Stroke Prevention and Treatment, 177–86. Oxford, UK: Wiley-Blackwell, 2011. http://dx.doi.org/10.1002/9781444327373.ch9.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Functional UltraSound"
Lambeth, Krysten, Ashwin Iyer e Nitin Sharma. "Quantifying Functional Electrical Stimulation-Induced Fatigue via Ultrasound for Hybrid Neuroprosthesis-Based Walking". In 2024 10th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), 1617–22. IEEE, 2024. http://dx.doi.org/10.1109/biorob60516.2024.10719933.
Texto completo da fonteErol, Aybüke, Pieter Kruizinga e Borbála Hunyadi. "Analyzing Trial-to-Trial Variability in the Mouse Visual Pathway Using Functional Ultrasound". In 2024 IEEE International Symposium on Biomedical Imaging (ISBI), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/isbi56570.2024.10635718.
Texto completo da fonteKotti, Sofia-Eirini, e Borbála Hunvadi. "Extracting Hemodynamic Activity with Low-Rank Spatial Signatures in Functional Ultrasound Using Tensor Decompositions". In 2024 32nd European Signal Processing Conference (EUSIPCO), 1347–51. IEEE, 2024. http://dx.doi.org/10.23919/eusipco63174.2024.10714979.
Texto completo da fonteWang, Lihong V. "Functional photoacoustic tomography of the human brain". In Photons Plus Ultrasound: Imaging and Sensing 2022, editado por Alexander A. Oraevsky e Lihong V. Wang. SPIE, 2022. http://dx.doi.org/10.1117/12.2631529.
Texto completo da fonteKoekkoek, S. K. E., S. Soloukey Tbalvandany, B. S. Generowicz, W. S. van Hoogstraten, N. L. de Oude, H. J. Boele, C. Strydis et al. "High Frequency Functional Ultrasound in Mice". In 2018 IEEE International Ultrasonics Symposium (IUS). IEEE, 2018. http://dx.doi.org/10.1109/ultsym.2018.8579865.
Texto completo da fonteCrowley, Robert J. "Ultrasound Catheter Imaging A Functional Overview". In OE/LASE '89, editado por Alan I. West. SPIE, 1989. http://dx.doi.org/10.1117/12.952183.
Texto completo da fonteVienneau, Emelina, Abbie Weeks, Stephen Wilson, Victoria Morgan e Brett Byram. "Contrast-Free Transcranial Functional Ultrasound Neuroimaging". In 2023 IEEE International Ultrasonics Symposium (IUS). IEEE, 2023. http://dx.doi.org/10.1109/ius51837.2023.10306684.
Texto completo da fonteRoquette, Lucien, Matthieu Simeoni e Paul Hurley. "A Functional Framework for Ultrasound Imaging". In 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, 2018. http://dx.doi.org/10.1109/icip.2018.8451283.
Texto completo da fonteZhu, Jingyi, Chao Liu, Jiangbo Chen, Yachao Zhang e Lidai Wang. "Optical fluence-compensated functional optical-resolution photoacoustic microscopy". In Photons Plus Ultrasound: Imaging and Sensing 2021, editado por Alexander A. Oraevsky e Lihong V. Wang. SPIE, 2021. http://dx.doi.org/10.1117/12.2577491.
Texto completo da fonteLiang, Yizhi, Xiaoxuan Zhong, Long Jin, Lidai Wang e Huan Liu. "Broadband fiber optic photoacoustic probe for functional brain imaging". In Photons Plus Ultrasound: Imaging and Sensing 2021, editado por Alexander A. Oraevsky e Lihong V. Wang. SPIE, 2021. http://dx.doi.org/10.1117/12.2577419.
Texto completo da fonteRelatórios de organizações sobre o assunto "Functional UltraSound"
Algain, Abdulaziz H., Florin Costescu e Karoll A. Rodelo Ceballos. Point-of-Care ultrasound evaluation of respiratory function. World Federation of Societies of Anaesthesiologists, maio de 2024. http://dx.doi.org/10.28923/atotw.523.
Texto completo da fonteLI, Peng, Junhong Ren e Yan Li. Lung ultrasound guided therapy for heart failure: an updated meta-analyses and trial sequential analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, fevereiro de 2022. http://dx.doi.org/10.37766/inplasy2022.2.0124.
Texto completo da fonte