Literatura científica selecionada sobre o tema "Functional equilibrium equations"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Functional equilibrium equations".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Functional equilibrium equations"
Murakami, Satoru. "Stable equilibrium point of some diffusive functional differential equations". Nonlinear Analysis: Theory, Methods & Applications 25, n.º 9-10 (novembro de 1995): 1037–43. http://dx.doi.org/10.1016/0362-546x(95)00097-f.
Texto completo da fonteTian, Xiaohong, e Rui Xu. "Global dynamics of a predator-prey system with Holling type II functional response". Nonlinear Analysis: Modelling and Control 16, n.º 2 (25 de abril de 2011): 242–53. http://dx.doi.org/10.15388/na.16.2.14109.
Texto completo da fonteLotfi, El Mehdi, Mehdi Maziane, Khalid Hattaf e Noura Yousfi. "Partial Differential Equations of an Epidemic Model with Spatial Diffusion". International Journal of Partial Differential Equations 2014 (10 de fevereiro de 2014): 1–6. http://dx.doi.org/10.1155/2014/186437.
Texto completo da fonteMeng, Xin-You, e Jiao-Guo Wang. "Analysis of a delayed diffusive model with Beddington–DeAngelis functional response". International Journal of Biomathematics 12, n.º 04 (maio de 2019): 1950047. http://dx.doi.org/10.1142/s1793524519500475.
Texto completo da fonteBENKHALTI, R., e K. EZZINBI. "A HARTMAN-GROBMAN THEOREM FOR SOME PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS". International Journal of Bifurcation and Chaos 10, n.º 05 (maio de 2000): 1165–69. http://dx.doi.org/10.1142/s0218127400000839.
Texto completo da fonteArora, Vivek K., e George J. Boer. "Simulating Competition and Coexistence between Plant Functional Types in a Dynamic Vegetation Model". Earth Interactions 10, n.º 10 (1 de maio de 2006): 1–30. http://dx.doi.org/10.1175/ei170.1.
Texto completo da fonteFaria, Teresa, e Luis T. Magalhães. "Realisation of ordinary differential equations by retarded functional differential equations in neighbourhoods of equilibrium points". Proceedings of the Royal Society of Edinburgh: Section A Mathematics 125, n.º 4 (1995): 759–76. http://dx.doi.org/10.1017/s030821050003033x.
Texto completo da fonteWang, Hanxiao, e Jiongmin Yong. "Time-inconsistent stochastic optimal control problems and backward stochastic volterra integral equations". ESAIM: Control, Optimisation and Calculus of Variations 27 (2021): 22. http://dx.doi.org/10.1051/cocv/2021027.
Texto completo da fonteMOAWAD, S. M. "Linear and nonlinear stability criteria for compressible MHD flows in a gravitational field". Journal of Plasma Physics 79, n.º 5 (14 de junho de 2013): 873–83. http://dx.doi.org/10.1017/s0022377813000627.
Texto completo da fonteHénot, Olivier. "On polynomial forms of nonlinear functional differential equations". Journal of Computational Dynamics 8, n.º 3 (2021): 307. http://dx.doi.org/10.3934/jcd.2021013.
Texto completo da fonteTeses / dissertações sobre o assunto "Functional equilibrium equations"
Hamaguchi, Yushi. "Extended backward stochastic Volterra integral equations and their applications to time-inconsistent stochastic recursive control problems". Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263434.
Texto completo da fonteAllanson, Oliver Douglas. "Theory of one-dimensional Vlasov-Maxwell equilibria : with applications to collisionless current sheets and flux tubes". Thesis, University of St Andrews, 2017. http://hdl.handle.net/10023/11916.
Texto completo da fonteEdirisinghe, Pathirannehelage Neranjan S. "Charge Transfer in Deoxyribonucleic Acid (DNA): Static Disorder, Dynamic Fluctuations and Complex Kinetic". Digital Archive @ GSU, 2011. http://digitalarchive.gsu.edu/phy_astr_diss/45.
Texto completo da fonteArhinful, Daniel Andoh. "Lorenzův systém: cesta od stability k chaosu". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417087.
Texto completo da fonteConnell, R. J. "Unstable equilibrium : modelling waves and turbulence in water flow". Diss., Lincoln University, 2008. http://hdl.handle.net/10182/592.
Texto completo da fonteHoffmann, Franca Karoline Olga. "Keller-Segel-type models and kinetic equations for interacting particles : long-time asymptotic analysis". Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/269646.
Texto completo da fontePimentel, Edgard Almeida. "Um ensaio em teoria dos jogos". Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-31082010-091851/.
Texto completo da fonteThis dissertation aims to address the topic of Differential Game Theory in its connection with the Hamilton-Jacobi (HJ) equations framework. Firstly we introduce the idea of solution for a game, through the discussion of Nash equilibria and its refinements. Secondly, the solution concept is then translated to the context of Differential Games and the idea of value function is introduced in its Isaacs\'s as well as Friedman\'s version. As the value function is discussed, its relationship with the Hamilton-Jacobi equations theory becomes self-evident. Due to such relation, we investigate the HJ equation from two distinct points of view. First of all, we discuss a statement according to which if a differential game has a continuously differentiable value function, then such function is a classical solution of the HJ equation associated to the game. This result strongly relies on Bellman\'s Dynamic Programming Principle - and this is the reason why we devote an entire chapter to this theme. Furthermore, HJ is still at our sight from the PDE point of view. Our motivation is simple: under some lack of regularity - a value function which is continuous, but not continuously differentiable - a game may still have a value function represented as a solution of the associated HJ equation. In this case such a solution will be called a solution in the viscosity sense. We then discuss the properties of viscosity solutions as well as provide an existence and uniqueness theorem. Finally we turn our attention back to the theory of games and - through the notion of viscosity - establish the existence and uniqueness of value functions for a differential game within viscosity solution theory.
Carrapatoso, Kléber. "Théorèmes asymptotiques pour les équations de Boltzmann et de Landau". Phd thesis, Université Paris Dauphine - Paris IX, 2013. http://tel.archives-ouvertes.fr/tel-00920455.
Texto completo da fonteCampos, Serrano Juan. "Modèles attractifs en astrophysique et biologie : points critiques et comportement en temps grand des solutions". Phd thesis, Université Paris Dauphine - Paris IX, 2012. http://tel.archives-ouvertes.fr/tel-00861568.
Texto completo da fonteDore-Hall, Skye. "Ramp function approximations of Michaelis-Menten functions in biochemical dynamical systems". Thesis, 2020. http://hdl.handle.net/1828/12485.
Texto completo da fonteGraduate
Livros sobre o assunto "Functional equilibrium equations"
1973-, Warzel Simone, ed. Random operators: Disorder effects on quantum spectra and dynamics. Providence, Rhode Island: American Mathematical Society, 2015.
Encontre o texto completo da fonteAlgebraic aspects of Darboux transformations, quantum integrable systems, and supersymmetric quantum mechanics. Providence, R.I: American Mathematical Society, 2012.
Encontre o texto completo da fonteHoring, Norman J. Morgenstern. Non-Equilibrium Green’s Functions: Variational Relations and Approximations for Particle Interactions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0009.
Texto completo da fonteMorawetz, Klaus. Nonequilibrium Green’s Functions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0007.
Texto completo da fonteMann, Peter. Near-Integrable Systems. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0024.
Texto completo da fonteHoring, Norman J. Morgenstern. Quantum Statistical Field Theory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.001.0001.
Texto completo da fonteBatterman, Robert W. A Middle Way. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780197568613.001.0001.
Texto completo da fonteCapítulos de livros sobre o assunto "Functional equilibrium equations"
Hale, Jack K., e Sjoerd M. Verduyn Lunel. "Near equilibrium and periodic orbits". In Introduction to Functional Differential Equations, 302–30. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-4342-7_11.
Texto completo da fonteNoor, Muhammad A., e Themistocles M. Rassias. "Some New Algorithms for Solving General Equilibrium Problems". In Handbook of Functional Equations, 407–17. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1246-9_17.
Texto completo da fonteShaikhet, Leonid. "Stability of SIR Epidemic Model Equilibrium Points". In Lyapunov Functionals and Stability of Stochastic Functional Differential Equations, 283–96. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00101-2_11.
Texto completo da fonteShaikhet, Leonid. "Stability of Equilibrium Points of Nicholson’s Blowflies Equation with Stochastic Perturbations". In Lyapunov Functionals and Stability of Stochastic Functional Differential Equations, 251–56. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00101-2_9.
Texto completo da fonteShaikhet, Leonid. "Stability of Positive Equilibrium Point of Nonlinear System of Type of Predator–Prey with Aftereffect and Stochastic Perturbations". In Lyapunov Functionals and Stability of Stochastic Functional Differential Equations, 257–82. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00101-2_10.
Texto completo da fonteArrigoni, Enrico, e Antonius Dorda. "Master Equations Versus Keldysh Green’s Functions for Correlated Quantum Systems Out of Equilibrium". In Out-of-Equilibrium Physics of Correlated Electron Systems, 121–88. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94956-7_4.
Texto completo da fonteGarrett, Steven L. "Attenuation of Sound". In Understanding Acoustics, 673–98. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44787-8_14.
Texto completo da fonteAnand, Lallit, e Sanjay Govindjee. "Principles of minimum potential energy and complementary energy". In Continuum Mechanics of Solids, 228–48. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198864721.003.0012.
Texto completo da fonteAruğaslan-Çinçin, Duygu, e Nur Cengiz. "Stability Analysis of a Nonlinear Epidemic Model With Generalized Piecewise Constant Argument". In Emerging Applications of Differential Equations and Game Theory, 182–208. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-0134-4.ch009.
Texto completo da fonte"H-Functional Equation". In A Non-Equilibrium Statistical Mechanics, 33–67. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812795199_0003.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Functional equilibrium equations"
Vallabhaneni, Ajit K., James Loy, Dhruv Singh, Xiulin Ruan e Jayathi Murthy. "A Study of Spatially-Resolved Non-Equilibrium in Laser-Irradiated Graphene Using Boltzmann Transport Equation". In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66095.
Texto completo da fonteYamada, Takayuki, Toshiro Matsumoto e Shinji Nishiwaki. "Design of Mechanical Structures Considering Harmonic Loads Using Level Set-Based Topology Optimization". In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70235.
Texto completo da fonteRyckelynck, David. "Multidimensional Hyper-Reduction of Large Mechanical Models Involving Internal Variables". In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82971.
Texto completo da fonteYang, Longxiang, e Stanley G. Hutton. "Numerical Formulation of Nonlinear Vibrations of Elastically-Constrained Rotating Disks". In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0322.
Texto completo da fonteGrover, Piyush. "Stability Analysis in Mean-Field Games via an Evans Function Approach". In ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-8926.
Texto completo da fonteSamsam Shariat, B., M. R. Eslami e A. Bagri. "Thermoelastic Stability of Imperfect Functionally Graded Plates Based on the Third Order Shear Deformation Theory". In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95018.
Texto completo da fonteWei, Zhigang, Fulun Yang, Shervin Maleki e Kamran Nikbin. "Equilibrium Based Curve Fitting Method for Test Data With Nonuniform Variance". In ASME 2012 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/pvp2012-78234.
Texto completo da fonteSMOLYANSKY, S. A., V. A. MIZERNY, D. V. VINNIK, A. V. PROZORKEVICH e V. D. TONEEV. "THE NON-EQUILIBRIUM DISTRIBUTION FUNCTION OF PARTICLES AND ANTI-PARTICLES CREATED IN STRONG FIELDS". In Proceedings of the Conference “Kadanoff-Baym Equations: Progress and Perspectives for Many-Body Physics”. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812793812_0029.
Texto completo da fonteKotchergenko, I. D. "The Areolar Strain Concept". In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66215.
Texto completo da fonteSaidi, A. R., F. Hejripour e E. Jomehzadeh. "On the Stress Singularities and Boundary Layer in Moderately Thick Functionally Graded Sectorial Plates". In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24395.
Texto completo da fonte