Artigos de revistas sobre o tema "Fully- and weakly-Supervised learning"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Fully- and weakly-Supervised learning".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Cuypers, Suzanna, Maarten Bassier e Maarten Vergauwen. "Deep Learning on Construction Sites: A Case Study of Sparse Data Learning Techniques for Rebar Segmentation". Sensors 21, n.º 16 (11 de agosto de 2021): 5428. http://dx.doi.org/10.3390/s21165428.
Texto completo da fonteWang, Ning, Jiajun Deng e Mingbo Jia. "Cycle-Consistency Learning for Captioning and Grounding". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 6 (24 de março de 2024): 5535–43. http://dx.doi.org/10.1609/aaai.v38i6.28363.
Texto completo da fonteWang, Guangyao. "A Study of Object Detection Based on Weakly Supervised Learning". International Journal of Computer Science and Information Technology 2, n.º 1 (25 de março de 2024): 476–78. http://dx.doi.org/10.62051/ijcsit.v2n1.50.
Texto completo da fonteAdke, Shrinidhi, Changying Li, Khaled M. Rasheed e Frederick W. Maier. "Supervised and Weakly Supervised Deep Learning for Segmentation and Counting of Cotton Bolls Using Proximal Imagery". Sensors 22, n.º 10 (12 de maio de 2022): 3688. http://dx.doi.org/10.3390/s22103688.
Texto completo da fonteNi, Ansong, Pengcheng Yin e Graham Neubig. "Merging Weak and Active Supervision for Semantic Parsing". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 05 (3 de abril de 2020): 8536–43. http://dx.doi.org/10.1609/aaai.v34i05.6375.
Texto completo da fonteColin, Aurélien, Ronan Fablet, Pierre Tandeo, Romain Husson, Charles Peureux, Nicolas Longépé e Alexis Mouche. "Semantic Segmentation of Metoceanic Processes Using SAR Observations and Deep Learning". Remote Sensing 14, n.º 4 (11 de fevereiro de 2022): 851. http://dx.doi.org/10.3390/rs14040851.
Texto completo da fonteCai, Tingting, Hongping Yan, Kun Ding, Yan Zhang e Yueyue Zhou. "WSPolyp-SAM: Weakly Supervised and Self-Guided Fine-Tuning of SAM for Colonoscopy Polyp Segmentation". Applied Sciences 14, n.º 12 (8 de junho de 2024): 5007. http://dx.doi.org/10.3390/app14125007.
Texto completo da fonteHong, Yining, Qing Li, Daniel Ciao, Siyuan Huang e Song-Chun Zhu. "Learning by Fixing: Solving Math Word Problems with Weak Supervision". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 6 (18 de maio de 2021): 4959–67. http://dx.doi.org/10.1609/aaai.v35i6.16629.
Texto completo da fonteChen, Shaolong, e Zhiyong Zhang. "A Semi-Automatic Magnetic Resonance Imaging Annotation Algorithm Based on Semi-Weakly Supervised Learning". Sensors 24, n.º 12 (16 de junho de 2024): 3893. http://dx.doi.org/10.3390/s24123893.
Texto completo da fonteZhang, Yachao, Zonghao Li, Yuan Xie, Yanyun Qu, Cuihua Li e Tao Mei. "Weakly Supervised Semantic Segmentation for Large-Scale Point Cloud". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 4 (18 de maio de 2021): 3421–29. http://dx.doi.org/10.1609/aaai.v35i4.16455.
Texto completo da fonteQian, Xiaoliang, Chenyang Lin, Zhiwu Chen e Wei Wang. "SAM-Induced Pseudo Fully Supervised Learning for Weakly Supervised Object Detection in Remote Sensing Images". Remote Sensing 16, n.º 9 (26 de abril de 2024): 1532. http://dx.doi.org/10.3390/rs16091532.
Texto completo da fonteCherikbayeva, L. Ch, N. K. Mukazhanov, Z. Alibiyeva, S. A. Adilzhanova, G. A. Tyulepberdinova e M. Zh Sakypbekova. "SOLUTION TO THE PROBLEM WEAKLY CONTROLLED REGRESSION USING COASSOCIATION MATRIX AND REGULARIZATION". Herald of the Kazakh-British technical university 21, n.º 2 (1 de julho de 2024): 83–94. http://dx.doi.org/10.55452/1998-6688-2024-21-2-83-94.
Texto completo da fonteFeng, Jiahao, Ce Li e Jin Wang. "CAM-TMIL: A Weakly-Supervised Segmentation Framework for Histopathology based on CAMs and MIL". Journal of Physics: Conference Series 2547, n.º 1 (1 de julho de 2023): 012014. http://dx.doi.org/10.1088/1742-6596/2547/1/012014.
Texto completo da fonteChen, Jie, Fen He, Yi Zhang, Geng Sun e Min Deng. "SPMF-Net: Weakly Supervised Building Segmentation by Combining Superpixel Pooling and Multi-Scale Feature Fusion". Remote Sensing 12, n.º 6 (24 de março de 2020): 1049. http://dx.doi.org/10.3390/rs12061049.
Texto completo da fonteWu, Zhenyu, Lin Wang, Wei Wang, Qing Xia, Chenglizhao Chen, Aimin Hao e Shuo Li. "Pixel Is All You Need: Adversarial Trajectory-Ensemble Active Learning for Salient Object Detection". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 3 (26 de junho de 2023): 2883–91. http://dx.doi.org/10.1609/aaai.v37i3.25390.
Texto completo da fonteLiu, Xiangquan, e Xiaoming Huang. "Weakly supervised salient object detection via bounding-box annotation and SAM model". Electronic Research Archive 32, n.º 3 (2024): 1624–45. http://dx.doi.org/10.3934/era.2024074.
Texto completo da fonteBožič, Jakob, Domen Tabernik e Danijel Skočaj. "Mixed supervision for surface-defect detection: From weakly to fully supervised learning". Computers in Industry 129 (agosto de 2021): 103459. http://dx.doi.org/10.1016/j.compind.2021.103459.
Texto completo da fonteGe, Yongtao, Qiang Zhou, Xinlong Wang, Chunhua Shen, Zhibin Wang e Hao Li. "Point-Teaching: Weakly Semi-supervised Object Detection with Point Annotations". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 1 (26 de junho de 2023): 667–75. http://dx.doi.org/10.1609/aaai.v37i1.25143.
Texto completo da fonteFu, Kun, Wanxuan Lu, Wenhui Diao, Menglong Yan, Hao Sun, Yi Zhang e Xian Sun. "WSF-NET: Weakly Supervised Feature-Fusion Network for Binary Segmentation in Remote Sensing Image". Remote Sensing 10, n.º 12 (6 de dezembro de 2018): 1970. http://dx.doi.org/10.3390/rs10121970.
Texto completo da fonteRoth, Holger R., Dong Yang, Ziyue Xu, Xiaosong Wang e Daguang Xu. "Going to Extremes: Weakly Supervised Medical Image Segmentation". Machine Learning and Knowledge Extraction 3, n.º 2 (2 de junho de 2021): 507–24. http://dx.doi.org/10.3390/make3020026.
Texto completo da fonteNartey, Obed Tettey, Guowu Yang, Sarpong Kwadwo Asare, Jinzhao Wu e Lady Nadia Frempong. "Robust Semi-Supervised Traffic Sign Recognition via Self-Training and Weakly-Supervised Learning". Sensors 20, n.º 9 (8 de maio de 2020): 2684. http://dx.doi.org/10.3390/s20092684.
Texto completo da fonteWatanabe, Takumi, Hiroki Takahashi, Yusuke Iwasawa, Yutaka Matsuo e Ikuko Eguchi Yairi. "Weakly Supervised Learning for Evaluating Road Surface Condition from Wheelchair Driving Data". Information 11, n.º 1 (19 de dezembro de 2019): 2. http://dx.doi.org/10.3390/info11010002.
Texto completo da fonteWang, Lukang, Min Zhang, Xu Gao e Wenzhong Shi. "Advances and Challenges in Deep Learning-Based Change Detection for Remote Sensing Images: A Review through Various Learning Paradigms". Remote Sensing 16, n.º 5 (25 de fevereiro de 2024): 804. http://dx.doi.org/10.3390/rs16050804.
Texto completo da fonteBaek, Kyungjune, Minhyun Lee e Hyunjung Shim. "PsyNet: Self-Supervised Approach to Object Localization Using Point Symmetric Transformation". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 07 (3 de abril de 2020): 10451–59. http://dx.doi.org/10.1609/aaai.v34i07.6615.
Texto completo da fonteHoang, Nhat M., Kehong Gong, Chuan Guo e Michael Bi Mi. "MotionMix: Weakly-Supervised Diffusion for Controllable Motion Generation". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 3 (24 de março de 2024): 2157–65. http://dx.doi.org/10.1609/aaai.v38i3.27988.
Texto completo da fonteQian, Rui, Yunchao Wei, Honghui Shi, Jiachen Li, Jiaying Liu e Thomas Huang. "Weakly Supervised Scene Parsing with Point-Based Distance Metric Learning". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julho de 2019): 8843–50. http://dx.doi.org/10.1609/aaai.v33i01.33018843.
Texto completo da fonteSebai, Meriem, Xinggang Wang e Tianjiang Wang. "MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images". Medical & Biological Engineering & Computing 58, n.º 7 (22 de maio de 2020): 1603–23. http://dx.doi.org/10.1007/s11517-020-02175-z.
Texto completo da fonteLin, Jianghang, Yunhang Shen, Bingquan Wang, Shaohui Lin, Ke Li e Liujuan Cao. "Weakly Supervised Open-Vocabulary Object Detection". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 4 (24 de março de 2024): 3404–12. http://dx.doi.org/10.1609/aaai.v38i4.28127.
Texto completo da fonteKrishnamurthy, Jayant, e Thomas Kollar. "Jointly Learning to Parse and Perceive: Connecting Natural Language to the Physical World". Transactions of the Association for Computational Linguistics 1 (dezembro de 2013): 193–206. http://dx.doi.org/10.1162/tacl_a_00220.
Texto completo da fonteZhang, Wei, Ping Tang, Thomas Corpetti e Lijun Zhao. "WTS: A Weakly towards Strongly Supervised Learning Framework for Remote Sensing Land Cover Classification Using Segmentation Models". Remote Sensing 13, n.º 3 (23 de janeiro de 2021): 394. http://dx.doi.org/10.3390/rs13030394.
Texto completo da fonteWang, Sherrie, William Chen, Sang Michael Xie, George Azzari e David B. Lobell. "Weakly Supervised Deep Learning for Segmentation of Remote Sensing Imagery". Remote Sensing 12, n.º 2 (7 de janeiro de 2020): 207. http://dx.doi.org/10.3390/rs12020207.
Texto completo da fonteXie, Fei, Panpan Zhang, Tao Jiang, Jiao She, Xuemin Shen, Pengfei Xu, Wei Zhao, Gang Gao e Ziyu Guan. "Lesion Segmentation Framework Based on Convolutional Neural Networks with Dual Attention Mechanism". Electronics 10, n.º 24 (13 de dezembro de 2021): 3103. http://dx.doi.org/10.3390/electronics10243103.
Texto completo da fonteWang, Yaodong, Lili Yue e Maoqing Li. "Cascaded Searching Reinforcement Learning Agent for Proposal-Free Weakly-Supervised Phrase Comprehension". Electronics 13, n.º 5 (27 de fevereiro de 2024): 898. http://dx.doi.org/10.3390/electronics13050898.
Texto completo da fonteOuassit, Youssef, Reda Moulouki, Mohammed Yassine El Ghoumari, Mohamed Azzouazi e Soufiane Ardchir. "Liver Segmentation: A Weakly End-to-End Supervised Model". International Journal of Online and Biomedical Engineering (iJOE) 16, n.º 09 (13 de agosto de 2020): 77. http://dx.doi.org/10.3991/ijoe.v16i09.15159.
Texto completo da fonteYan, Qing, Tao Sun, Jingjing Zhang e Lina Xun. "Visibility Estimation Based on Weakly Supervised Learning under Discrete Label Distribution". Sensors 23, n.º 23 (24 de novembro de 2023): 9390. http://dx.doi.org/10.3390/s23239390.
Texto completo da fonteZhao, Lulu, Yanan Zhao, Ting Liu e Hanbing Deng. "A Weakly Supervised Semantic Segmentation Model of Maize Seedlings and Weed Images Based on Scrawl Labels". Sensors 23, n.º 24 (15 de dezembro de 2023): 9846. http://dx.doi.org/10.3390/s23249846.
Texto completo da fonteZhang, Shuyuan, Hongli Xu, Xiaoran Zhu e Lipeng Xie. "Automatic Crack Detection Using Weakly Supervised Semantic Segmentation Network and Mixed-Label Training Strategy". Foundations of Computing and Decision Sciences 49, n.º 1 (1 de fevereiro de 2024): 95–118. http://dx.doi.org/10.2478/fcds-2024-0007.
Texto completo da fonteChen, Hao, Shuang Peng, Chun Du, Jun Li e Songbing Wu. "SW-GAN: Road Extraction from Remote Sensing Imagery Using Semi-Weakly Supervised Adversarial Learning". Remote Sensing 14, n.º 17 (23 de agosto de 2022): 4145. http://dx.doi.org/10.3390/rs14174145.
Texto completo da fonteZheng, Shida, Chenshu Chen, Xi Yang e Wenming Tan. "MaskBooster: End-to-End Self-Training for Sparsely Supervised Instance Segmentation". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 3 (26 de junho de 2023): 3696–704. http://dx.doi.org/10.1609/aaai.v37i3.25481.
Texto completo da fonteQiang, Zhuang, Jingmin Shi e Fanhuai Shi. "Phenotype Tracking of Leafy Greens Based on Weakly Supervised Instance Segmentation and Data Association". Agronomy 12, n.º 7 (29 de junho de 2022): 1567. http://dx.doi.org/10.3390/agronomy12071567.
Texto completo da fonteLiu, Yiqing, Qiming He, Hufei Duan, Huijuan Shi, Anjia Han e Yonghong He. "Using Sparse Patch Annotation for Tumor Segmentation in Histopathological Images". Sensors 22, n.º 16 (13 de agosto de 2022): 6053. http://dx.doi.org/10.3390/s22166053.
Texto completo da fonteMo, Shaoyi, Yufeng Shi, Qi Yuan e Mingyue Li. "A Survey of Deep Learning Road Extraction Algorithms Using High-Resolution Remote Sensing Images". Sensors 24, n.º 5 (6 de março de 2024): 1708. http://dx.doi.org/10.3390/s24051708.
Texto completo da fonteFan, Yifei. "Image semantic segmentation using deep learning technique". Applied and Computational Engineering 4, n.º 1 (14 de junho de 2023): 810–17. http://dx.doi.org/10.54254/2755-2721/4/2023439.
Texto completo da fonteKuutti, Sampo, Richard Bowden e Saber Fallah. "Weakly Supervised Reinforcement Learning for Autonomous Highway Driving via Virtual Safety Cages". Sensors 21, n.º 6 (13 de março de 2021): 2032. http://dx.doi.org/10.3390/s21062032.
Texto completo da fonteWang, Zhuhui, Shijie Wang, Haojie Li, Zhi Dou e Jianjun Li. "Graph-Propagation Based Correlation Learning for Weakly Supervised Fine-Grained Image Classification". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 07 (3 de abril de 2020): 12289–96. http://dx.doi.org/10.1609/aaai.v34i07.6912.
Texto completo da fonteCheng, Jianpeng, Siva Reddy, Vijay Saraswat e Mirella Lapata. "Learning an Executable Neural Semantic Parser". Computational Linguistics 45, n.º 1 (março de 2019): 59–94. http://dx.doi.org/10.1162/coli_a_00342.
Texto completo da fonteSali, Rasoul, Nazanin Moradinasab, Shan Guleria, Lubaina Ehsan, Philip Fernandes, Tilak U. Shah, Sana Syed e Donald E. Brown. "Deep Learning for Whole-Slide Tissue Histopathology Classification: A Comparative Study in the Identification of Dysplastic and Non-Dysplastic Barrett’s Esophagus". Journal of Personalized Medicine 10, n.º 4 (23 de setembro de 2020): 141. http://dx.doi.org/10.3390/jpm10040141.
Texto completo da fonteWolf, Daniel, Sebastian Regnery, Rafal Tarnawski, Barbara Bobek-Billewicz, Joanna Polańska e Michael Götz. "Weakly Supervised Learning with Positive and Unlabeled Data for Automatic Brain Tumor Segmentation". Applied Sciences 12, n.º 21 (24 de outubro de 2022): 10763. http://dx.doi.org/10.3390/app122110763.
Texto completo da fonteWolf, Daniel, Sebastian Regnery, Rafal Tarnawski, Barbara Bobek-Billewicz, Joanna Polańska e Michael Götz. "Weakly Supervised Learning with Positive and Unlabeled Data for Automatic Brain Tumor Segmentation". Applied Sciences 12, n.º 21 (24 de outubro de 2022): 10763. http://dx.doi.org/10.3390/app122110763.
Texto completo da fonteWolf, Daniel, Sebastian Regnery, Rafal Tarnawski, Barbara Bobek-Billewicz, Joanna Polańska e Michael Götz. "Weakly Supervised Learning with Positive and Unlabeled Data for Automatic Brain Tumor Segmentation". Applied Sciences 12, n.º 21 (24 de outubro de 2022): 10763. http://dx.doi.org/10.3390/app122110763.
Texto completo da fonte