Artigos de revistas sobre o tema "Froth recovery"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Froth recovery".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Martinez, Jose, Miguel Maldonado e Leopoldo Gutierrez. "A Method to Predict Water Recovery Rate in the Collection and Froth Zone of Flotation Systems". Minerals 10, n.º 7 (16 de julho de 2020): 630. http://dx.doi.org/10.3390/min10070630.
Texto completo da fonteOstadrahimi, Mahdi, Saeed Farrokhpay, Khodakaram Gharibi e Ali Dehghani. "Effects of Operating Parameters on the Froth and Collection Zone Recovery in Flotation: An Industrial Case Study in a 10 m3 Cell". Minerals 11, n.º 5 (7 de maio de 2021): 494. http://dx.doi.org/10.3390/min11050494.
Texto completo da fonteYianatos, Juan, Paulina Vallejos, Luis Vinnett e Sebastián Arriagada. "Semi-Continuous Froth Discharge to Reduce Entrainment of Fine Particles in Flotation Cells Subject to Low-Mineralized Froths". Minerals 10, n.º 8 (5 de agosto de 2020): 695. http://dx.doi.org/10.3390/min10080695.
Texto completo da fonteJera, Tawona Martin, e Clayton Bhondayi. "A Review on Froth Washing in Flotation". Minerals 12, n.º 11 (19 de novembro de 2022): 1462. http://dx.doi.org/10.3390/min12111462.
Texto completo da fonteJera, Tawona M., e Clayton Bhondayi. "A Review of Flotation Physical Froth Flow Modifiers". Minerals 11, n.º 8 (10 de agosto de 2021): 864. http://dx.doi.org/10.3390/min11080864.
Texto completo da fonteRuismäki, Ronja, Tommi Rinne, Anna Dańczak, Pekka Taskinen, Rodrigo Serna-Guerrero e Ari Jokilaakso. "Integrating Flotation and Pyrometallurgy for Recovering Graphite and Valuable Metals from Battery Scrap". Metals 10, n.º 5 (21 de maio de 2020): 680. http://dx.doi.org/10.3390/met10050680.
Texto completo da fonteDuoc, Tran Van, Nguyen Hoang Son, Nhu Thi Kim Dung e Vu Thi Chinh. "Recovery of clean coal from blast furnace dusts by flotation column". Journal of Mining and Earth Sciences 61, n.º 1 (28 de fevereiro de 2020): 124–31. http://dx.doi.org/10.46326/jmes.2020.61(1).14.
Texto completo da fonteKhan, Shaihroz, Omar Bashir Wani, Mohammad Shoaib, John Forster, Rana N. Sodhi, Darryel Boucher e Erin R. Bobicki. "Mineral carbonation for serpentine mitigation in nickel processing: a step towards industrial carbon capture and storage". Faraday Discussions 230 (2021): 172–86. http://dx.doi.org/10.1039/d1fd00006c.
Texto completo da fonteYianatos, J. B., M. H. Moys, F. Contreras e A. Villanueva. "Froth recovery of industrial flotation cells". Minerals Engineering 21, n.º 12-14 (novembro de 2008): 817–25. http://dx.doi.org/10.1016/j.mineng.2007.12.012.
Texto completo da fonteNeethling, S. J. "Simple approximations for estimating froth recovery". International Journal of Mineral Processing 89, n.º 1-4 (dezembro de 2008): 44–52. http://dx.doi.org/10.1016/j.minpro.2008.09.007.
Texto completo da fonteTaner, Hasan Ali, e Vildan Onen. "Study of chalcopyrite flotation in the presence of illite using a design of experiments approach". Clay Minerals 56, n.º 3 (setembro de 2021): 197–209. http://dx.doi.org/10.1180/clm.2021.35.
Texto completo da fonteÄMMÄLÄ, ARI, LIISA MÄKINEN, HENRIKKI LIIMATAINEN e JOUKO NIINIMÄKI. "Effect of carboxymethylcellulose and starch depressants on recovery of filler and fines in tertiary flotation". March 2013 12, n.º 3 (1 de abril de 2013): 43–50. http://dx.doi.org/10.32964/tj12.3.43.
Texto completo da fonteMuanda, Meschack Mukunga, Pele Pascal Daniel Omalanga e Vanessa Mwambaie Mitonga. "Comparative Cleaning Stages in Recovery of Copper and Cobalt from Tailings using Potassium Amylxanthate as Collector". European Journal of Engineering and Technology Research 6, n.º 2 (16 de fevereiro de 2021): 96–100. http://dx.doi.org/10.24018/ejers.2021.6.2.2165.
Texto completo da fonteMuanda, Meschack Mukunga, Pele Pascal Daniel Omalanga e Vanessa Mwambaie Mitonga. "Comparative Cleaning Stages in Recovery of Copper and Cobalt from Tailings using Potassium Amylxanthate as Collector". European Journal of Engineering and Technology Research 6, n.º 2 (16 de fevereiro de 2021): 96–100. http://dx.doi.org/10.24018/ejeng.2021.6.2.2165.
Texto completo da fonteYu, Shaning, e J. A. Finch. "Froth Zone Recovery in a Flotation Column". Canadian Metallurgical Quarterly 29, n.º 3 (julho de 1990): 237–38. http://dx.doi.org/10.1179/cmq.1990.29.3.237.
Texto completo da fonteLepage, Mark R., Cesar O. Gomez e Kristian E. Waters. "Using Top-of-Froth Conductivity to Infer Water Overflow Rate in a Two-Phase Lab-Scale Flotation Column". Minerals 12, n.º 4 (7 de abril de 2022): 454. http://dx.doi.org/10.3390/min12040454.
Texto completo da fonteYou, Hao, Hongjuan Sun, Tongjiang Peng, Yating Qin e Song Tang. "Recovery of Residual Carbon from Ti-Extraction Blast Furnace Slag by Flotation with Simultaneous Dechlorination". Energies 15, n.º 18 (16 de setembro de 2022): 6777. http://dx.doi.org/10.3390/en15186777.
Texto completo da fonteVallejos, Paulina, Juan Yianatos, Rodrigo Grau e Alejandro Yáñez. "The Impact of Froth Launders Design in an Industrial Flotation Bank Using Novel Metallurgical and Hydrodynamic Models". Minerals 13, n.º 2 (24 de janeiro de 2023): 169. http://dx.doi.org/10.3390/min13020169.
Texto completo da fonteMcFadzean, B., T. Marozva e J. Wiese. "Flotation frother mixtures: Decoupling the sub-processes of froth stability, froth recovery and entrainment". Minerals Engineering 85 (janeiro de 2016): 72–79. http://dx.doi.org/10.1016/j.mineng.2015.10.014.
Texto completo da fonteMdoe, Reuben J., e Anand Anupam. "Recovery of Coal Values from Middling and Rejects by Froth Flotation and Mozley Mineral Separation". Studies in Engineering and Technology 8, n.º 1 (18 de junho de 2021): 40. http://dx.doi.org/10.11114/set.v8i1.4785.
Texto completo da fonteGuler, Taki, e Ercan Polat. "Gangue Entrainment in Olivine Flotation: Effect of MIBC Dosage on the Mitigation of Lizardite Recovery". Current Physical Chemistry 10, n.º 2 (19 de agosto de 2020): 98–106. http://dx.doi.org/10.2174/1877946809666190919092219.
Texto completo da fonteGutierrez, Leopoldo, Fernando Betancourt, Lina Uribe e Miguel Maldonado. "Influence of Seawater on the Degree of Entrainment in the Flotation of a Synthetic Copper Ore". Minerals 10, n.º 7 (9 de julho de 2020): 615. http://dx.doi.org/10.3390/min10070615.
Texto completo da fontePark, Chul-Hyun, Ho-Seok Jeon, Byoung-Gon Kim e Oh-Hyung Han. "Recovery of Roasting-Molybdenite Concentrate by Froth Flotation". Korean Journal of Materials Research 19, n.º 12 (27 de dezembro de 2009): 661–66. http://dx.doi.org/10.3740/mrsk.2009.19.12.661.
Texto completo da fonteRahman, Reza M., Seher Ata e Graeme J. Jameson. "Froth recovery measurements in an industrial flotation cell". Minerals Engineering 53 (novembro de 2013): 193–202. http://dx.doi.org/10.1016/j.mineng.2013.08.003.
Texto completo da fonteAlexander, D. J., J. P. Franzidis e E. V. Manlapig. "Froth recovery measurement in plant scale flotation cells". Minerals Engineering 16, n.º 11 (novembro de 2003): 1197–203. http://dx.doi.org/10.1016/j.mineng.2003.07.016.
Texto completo da fonteLan, Zhuo Yue, Yong Cheng Zhou e Xiong Tong. "Recovery of Fine Cassiterite from Tin Tailings Slime by Froth Flotation". Advanced Materials Research 634-638 (janeiro de 2013): 3478–83. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.3478.
Texto completo da fonteChen, Yong, Jiankang Wen, Yongsheng Song, Wenjuan Li, Shuang Liu e Ying Liu. "Mineralogical Characteristics of Pegmatite Tailings and Beneficiation Assessment of Pollucite in Recovering Cesium". Minerals 12, n.º 5 (27 de abril de 2022): 541. http://dx.doi.org/10.3390/min12050541.
Texto completo da fonteItyokumbul, M. T., W. Bulani e N. Kosaric. "Economic and Environmental Benefits from Froth Flotation Recovery of Titanium, Zirconium, Iron and Rare Earth Minerals from Oilsand Tailings". Water Science and Technology 19, n.º 3-4 (1 de março de 1987): 323–31. http://dx.doi.org/10.2166/wst.1987.0213.
Texto completo da fonteAl-Maghrabi, Mohammed-Noor. "Modeling the Recovery of Froth Flotation Using Game Theory". Journal of Mining World Express 5 (2016): 1. http://dx.doi.org/10.14355/mwe.2016.05.001.
Texto completo da fonteJameson, Graeme J., e Cagri Emer. "Coarse chalcopyrite recovery in a universal froth flotation machine". Minerals Engineering 134 (abril de 2019): 118–33. http://dx.doi.org/10.1016/j.mineng.2019.01.024.
Texto completo da fonteHay, Martyn P. "Optimising froth condition and recovery for a nickel ore". Minerals Engineering 21, n.º 12-14 (novembro de 2008): 861–72. http://dx.doi.org/10.1016/j.mineng.2008.04.013.
Texto completo da fonteZhang, Jie, Jiapeng Li, Yu Wang, Meijie Sun, Lufan Wang e Yanan Tu. "Separation of Graphites and Cathode Materials from Spent Lithium-Ion Batteries Using Roasting–Froth Flotation". Sustainability 15, n.º 1 (20 de dezembro de 2022): 30. http://dx.doi.org/10.3390/su15010030.
Texto completo da fonteDvoichenkova, G. P., V. V. Morozov, E. L. Chanturia e E. G. Kovalenko. "Selection of recycled water electrochemical conditioning parameters for preparation of diamond-bearing kimberlite for froth separation". Gornye nauki i tekhnologii = Mining Science and Technology (Russia) 6, n.º 3 (13 de outubro de 2021): 170–80. http://dx.doi.org/10.17073/2500-0632-2021-3-170-180.
Texto completo da fonteCao, Qin Bo, Shu Ming Wen, Chen Xiu Li, Shao Jun Bai e Dan Liu. "Application of New Flotation Machine on Phosphate Flotation". Advanced Materials Research 616-618 (dezembro de 2012): 624–27. http://dx.doi.org/10.4028/www.scientific.net/amr.616-618.624.
Texto completo da fonteBustamante Rúa, Moises Oswaldo, Sindy Dayanis Gonzalez Arias e Pablo Bustamante Baena. "Nickel laterite concentration through a non-conventional method with surface sulfidization". DYNA 87, n.º 215 (1 de outubro de 2020): 18–27. http://dx.doi.org/10.15446/dyna.v87n215.85981.
Texto completo da fonteAkande, S., E. O. Ajaka, O. O. Alabi e T. A. Olatunji. "Effects of varied process parameters on froth flotation efficiency: A case study of Itakpe iron ore". Nigerian Journal of Technology 39, n.º 3 (16 de setembro de 2020): 807–15. http://dx.doi.org/10.4314/njt.v39i3.21.
Texto completo da fonteAmelunxen, Peter, Gerson Sandoval, David Barriga e Roger Amelunxen. "The implications of the froth recovery at the laboratory scale". Minerals Engineering 66-68 (novembro de 2014): 54–61. http://dx.doi.org/10.1016/j.mineng.2014.04.022.
Texto completo da fonteKoutlemani, M. M., P. Mavros, A. I. Zouboulis e K. A. Matis. "Recovery of Co2+Ions from Aqueous Solutions by Froth Flotation". Separation Science and Technology 29, n.º 7 (abril de 1994): 867–86. http://dx.doi.org/10.1080/01496399408006631.
Texto completo da fonteMuhammad Arif Bhatti, Muhammad Arif Bhatti, Kamran Raza Kazmi Kamran Raza Kazmi, Samreen Zahra Samreen Zahra e Ansar Mehmood and Rashid Mehmood Ansar Mehmood and Rashid Mehmood. "Beneficiation Study on Low-Grade Graphite Ore of Shounter Valley, Azad Kashmir, Pakistan". Journal of the chemical society of pakistan 42, n.º 1 (2020): 1. http://dx.doi.org/10.52568/000617.
Texto completo da fonteMuhammad Arif Bhatti, Muhammad Arif Bhatti, Kamran Raza Kazmi Kamran Raza Kazmi, Samreen Zahra Samreen Zahra e Ansar Mehmood and Rashid Mehmood Ansar Mehmood and Rashid Mehmood. "Beneficiation Study on Low-Grade Graphite Ore of Shounter Valley, Azad Kashmir, Pakistan". Journal of the chemical society of pakistan 42, n.º 1 (2020): 1. http://dx.doi.org/10.52568/000617/jcsp/42.01.2020.
Texto completo da fonteMehta, Neha, Giovanna Dino, Iride Passarella, Franco Ajmone-Marsan, Piergiorgio Rossetti e Domenico De Luca. "Assessment of the Possible Reuse of Extractive Waste Coming from Abandoned Mine Sites: Case Study in Gorno, Italy". Sustainability 12, n.º 6 (21 de março de 2020): 2471. http://dx.doi.org/10.3390/su12062471.
Texto completo da fonteGrassia, P., E. Mas-Hernández, N. Shokri, S. J. Cox, G. Mishuris e W. R. Rossen. "Analysis of a model for foam improved oil recovery". Journal of Fluid Mechanics 751 (20 de junho de 2014): 346–405. http://dx.doi.org/10.1017/jfm.2014.287.
Texto completo da fonteLeiva, Claudio, Claudio Acuña, Luis Bergh, Saija Luukkanen e Cristóbal da Silva. "Online Superficial Gas Velocity, Holdup, and Froth Depth Sensor for Flotation Cells". Journal of Sensors 2022 (19 de dezembro de 2022): 1–12. http://dx.doi.org/10.1155/2022/7221294.
Texto completo da fonteHögberg, Ida, Dariusz Zasadowski, Anette Karlsson, Bengt Wikman, Fredrik Andersson, Erik Hedenström, Håkan Edlund e Magnus Norgren. "Brightness development of a hydrogen peroxide bleached spruce TMP. Comparisons of pre-treatments with DTPA and a separable chelating surfactant". Nordic Pulp & Paper Research Journal 27, n.º 1 (1 de janeiro de 2012): 50–55. http://dx.doi.org/10.3183/npprj-2012-27-01-p050-055.
Texto completo da fonteAlabi, Oladunni Oyelola, Olanrewaju Rotimi Bodede e Taiwo Paul Popoola. "Froth Flotation Beneficiation a Sure Way to Value Addition to Arufu (Nigeria) Zinc Ore Towards Smelting Grade Concentrate Production". European Journal of Engineering Research and Science 5, n.º 5 (31 de maio de 2020): 622–25. http://dx.doi.org/10.24018/ejers.2020.5.5.1933.
Texto completo da fonteAlabi, Oladunni Oyelola, Olanrewaju Rotimi Bodede e Taiwo Paul Popoola. "Froth Flotation Beneficiation a Sure Way to Value Addition to Arufu (Nigeria) Zinc Ore Towards Smelting Grade Concentrate Production". European Journal of Engineering and Technology Research 5, n.º 5 (31 de maio de 2020): 622–25. http://dx.doi.org/10.24018/ejeng.2020.5.5.1933.
Texto completo da fonteCruz, Constanza, Sebastián Herrera-León, Daniel Calisaya-Azpilcueta, Ruth Salazar, Luis A. Cisternas e Andrzej Kraslawski. "Using Waste Brine from Desalination Plant as a Source of Industrial Water in Copper Mining Industry". Minerals 12, n.º 9 (14 de setembro de 2022): 1162. http://dx.doi.org/10.3390/min12091162.
Texto completo da fonteMorozov, Iurii, Tatiana Intogarova, Olga Valieva e Iuliia Donets. "Flotation classification in closed-circuit grinding as a way of reducing sulphide ore overgrinding". Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal, n.º 1 (17 de fevereiro de 2021): 85–96. http://dx.doi.org/10.21440/0536-1028-2021-1-85-96.
Texto completo da fonteDzingai, Mathew, Malibongwe Manono e Kirsten Corin. "Simulating the Effect of Water Recirculation on Flotation through Ion-Spiking: Effect of Ca2+ and Mg2+". Minerals 10, n.º 11 (19 de novembro de 2020): 1033. http://dx.doi.org/10.3390/min10111033.
Texto completo da fonteYianatos, J., e P. Vallejos. "Limiting conditions in large flotation cells: Froth recovery and bubble loading". Minerals Engineering 185 (julho de 2022): 107695. http://dx.doi.org/10.1016/j.mineng.2022.107695.
Texto completo da fonte