Artigos de revistas sobre o tema "Fractured chalk"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Fractured chalk".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Gale, Julia F. W. "Specifying Lengths of Horizontal Wells in Fractured Reservoirs". SPE Reservoir Evaluation & Engineering 5, n.º 03 (1 de junho de 2002): 266–72. http://dx.doi.org/10.2118/78600-pa.
Texto completo da fonteCarpenter, Chris. "Extended Laterals and Hydraulic Fracturing Redevelop Tight Fractured Carbonates". Journal of Petroleum Technology 76, n.º 07 (1 de julho de 2024): 93–95. http://dx.doi.org/10.2118/0724-0093-jpt.
Texto completo da fonteBredal, Tine Vigdel, Reidar Inge Korsnes, Udo Zimmermann, Mona Wetrhus Minde e Merete Vadla Madland. "Water Weakening of Artificially Fractured Chalk, Fracture Modification and Mineral Precipitation during Water Injection—An Experimental Study". Energies 15, n.º 10 (22 de maio de 2022): 3817. http://dx.doi.org/10.3390/en15103817.
Texto completo da fonteBrettmann, K. L., K. Høgh Jensen e R. Jakobsen. "Tracer Test in Fractured Chalk". Hydrology Research 24, n.º 4 (1 de agosto de 1993): 275–96. http://dx.doi.org/10.2166/nh.1993.0008.
Texto completo da fonteZuta, John, e Ingebret Fjelde. "Transport of CO2-Foaming Agents During CO2-Foam Processes in Fractured Chalk Rock". SPE Reservoir Evaluation & Engineering 13, n.º 04 (5 de agosto de 2010): 710–19. http://dx.doi.org/10.2118/121253-pa.
Texto completo da fonteJakobsen, R., K. Høgh Jensen e K. L. Brettmann. "Tracer Test in Fractured Chalk". Hydrology Research 24, n.º 4 (1 de agosto de 1993): 263–74. http://dx.doi.org/10.2166/nh.1993.0007.
Texto completo da fonteEide, Øyvind, Martin A. Fernø, Zachary Alcorn e Arne Graue. "Visualization of Carbon Dioxide Enhanced Oil Recovery by Diffusion in Fractured Chalk". SPE Journal 21, n.º 01 (18 de fevereiro de 2016): 112–20. http://dx.doi.org/10.2118/170920-pa.
Texto completo da fonteAl-Shuhail, Abdullatif A. "Fracture-porosity inversion from P-wave AVOA data along 2D seismic lines: An example from the Austin Chalk of southeast Texas". GEOPHYSICS 72, n.º 1 (janeiro de 2007): B1—B7. http://dx.doi.org/10.1190/1.2399444.
Texto completo da fonteSayer, Zoë, Jonathan Edet, Rob Gooder e Alexandra Love. "The Machar Field, Block 23/26a, UK North Sea". Geological Society, London, Memoirs 52, n.º 1 (2020): 523–36. http://dx.doi.org/10.1144/m52-2018-45.
Texto completo da fonteGraue, A., T. Bognø, B. A. Baldwin e E. A. Spinler. "Wettability Effects on Oil-Recovery Mechanisms in Fractured Reservoirs". SPE Reservoir Evaluation & Engineering 4, n.º 06 (1 de dezembro de 2001): 455–66. http://dx.doi.org/10.2118/74335-pa.
Texto completo da fonteIreson, A. M., A. B. Butler e H. S. Wheater. "Evidence for the onset and persistence with depth of preferential flow in unsaturated fractured porous media". Hydrology Research 43, n.º 5 (12 de abril de 2012): 707–19. http://dx.doi.org/10.2166/nh.2012.030.
Texto completo da fonteRahman, Mostaquimur, e Rafael Rosolem. "Towards a simple representation of chalk hydrology in land surface modelling". Hydrology and Earth System Sciences 21, n.º 1 (25 de janeiro de 2017): 459–71. http://dx.doi.org/10.5194/hess-21-459-2017.
Texto completo da fonteKeim, Dawn M., L. Jared West e Noelle E. Odling. "Convergent Flow in Unsaturated Fractured Chalk". Vadose Zone Journal 11, n.º 4 (novembro de 2012): vzj2011.0146. http://dx.doi.org/10.2136/vzj2011.0146.
Texto completo da fonteYeh, N. S., M. J. Davison e R. Raghavan. "Fractured Well Responses in Heterogeneous Systems—Application to Devonian Shale and Austin Chalk Reservoirs". Journal of Energy Resources Technology 108, n.º 2 (1 de junho de 1986): 120–30. http://dx.doi.org/10.1115/1.3231251.
Texto completo da fonteShtober-Zisu, N., N. Tessler, A. Tsatskin e N. Greenbaum. "Accelerated weathering of carbonate rocks following the 2010 wildfire on Mount Carmel, Israel". International Journal of Wildland Fire 24, n.º 8 (2015): 1154. http://dx.doi.org/10.1071/wf14221.
Texto completo da fontePastore, Nicola, Claudia Cherubini e Concetta I. Giasi. "Kinematic diffusion approach to describe recharge phenomena in unsaturated fractured chalk". Journal of Hydrology and Hydromechanics 65, n.º 3 (1 de setembro de 2017): 287–96. http://dx.doi.org/10.1515/johh-2017-0033.
Texto completo da fonteWang, Dongmei, Jin Zhang, Raymond Butler e Kayode Olatunji. "Scaling Laboratory-Data Surfactant-Imbibition Rates to the Field in Fractured-Shale Formations". SPE Reservoir Evaluation & Engineering 19, n.º 03 (19 de fevereiro de 2016): 440–49. http://dx.doi.org/10.2118/178489-pa.
Texto completo da fonteTang, Guo-Qing, e Abbas Firoozabadi. "Effect of Pressure Gradient and Initial Water Saturation on Water Injection in Water-Wet and Mixed-Wet Fractured Porous Media". SPE Reservoir Evaluation & Engineering 4, n.º 06 (1 de dezembro de 2001): 516–24. http://dx.doi.org/10.2118/74711-pa.
Texto completo da fonteKallesten, Emanuela, Pål Østebø Andersen, Dhruvit Satishchandra Berawala, Reidar Inge Korsnes, Merete Vadla Madland, Edvard Omdal e Udo Zimmermann. "Modeling of Permeability and Strain Evolution in Chemical Creep Compaction Experiments with Fractured and Unfractured Chalk Cores Conducted at Reservoir Conditions". SPE Journal 25, n.º 05 (16 de abril de 2020): 2710–28. http://dx.doi.org/10.2118/197371-pa.
Texto completo da fonteAlavian, S. A., e C. H. Whitson. "Numerical modeling CO2 injection in a fractured chalk experiment". Journal of Petroleum Science and Engineering 77, n.º 2 (maio de 2011): 172–82. http://dx.doi.org/10.1016/j.petrol.2011.02.014.
Texto completo da fonteArnon, Shai, Eilon Adar, Zeev Ronen, Ali Nejidat, Alexander Yakirevich e Ronit Nativ. "Biodegradation of 2,4,6-Tribromophenol during Transport in Fractured Chalk". Environmental Science & Technology 39, n.º 3 (fevereiro de 2005): 748–55. http://dx.doi.org/10.1021/es0491578.
Texto completo da fonteWeisbrod, Noam, Ofer Dahan e Eilon M. Adar. "Particle transport in unsaturated fractured chalk under arid conditions". Journal of Contaminant Hydrology 56, n.º 1-2 (maio de 2002): 117–36. http://dx.doi.org/10.1016/s0169-7722(01)00199-1.
Texto completo da fonteAdar, Eilon, e Ronit Nativ. "Isotopes as tracers in a contaminated fractured chalk aquitard". Journal of Contaminant Hydrology 65, n.º 1-2 (agosto de 2003): 19–39. http://dx.doi.org/10.1016/s0169-7722(02)00237-1.
Texto completo da fonteGhasemi, M., W. Astutik, S. Alavian, C. H. Whitson, L. Sigalas, D. Olsen e V. S. Suicmez. "Tertiary-CO2 flooding in a composite fractured-chalk reservoir". Journal of Petroleum Science and Engineering 160 (janeiro de 2018): 327–40. http://dx.doi.org/10.1016/j.petrol.2017.10.054.
Texto completo da fonteWefer-Roehl, A., E. R. Graber, M. D. Borisover, E. Adar, R. Nativ e Z. Ronen. "Sorption of organic contaminants in a fractured chalk formation". Chemosphere 44, n.º 5 (agosto de 2001): 1121–30. http://dx.doi.org/10.1016/s0045-6535(00)00309-x.
Texto completo da fonteEzra, Shai, Shimon Feinstein, Alex Yakirevich, Eilon Adar e Itzhak Bilkis. "Retardation of organo-bromides in a fractured chalk aquitard". Journal of Contaminant Hydrology 86, n.º 3-4 (agosto de 2006): 195–214. http://dx.doi.org/10.1016/j.jconhyd.2006.02.016.
Texto completo da fonteWitthuser, K., B. Reichert e H. Hotzl. "Contaminant Transport in Fractured Chalk: Laboratory and Field Experiments". Ground Water 41, n.º 6 (novembro de 2003): 806–15. http://dx.doi.org/10.1111/j.1745-6584.2003.tb02421.x.
Texto completo da fonteCasabianca, D., R. J. H. Jolly e R. Pollard. "The Machar Oil Field: waterflooding a fractured chalk reservoir". Geological Society, London, Special Publications 270, n.º 1 (2007): 171–91. http://dx.doi.org/10.1144/gsl.sp.2007.270.01.12.
Texto completo da fonteChamp, D. R., e J. Schroeter. "Bacterial Transport in Fractured Rock – A Field-Scale Tracer Test at the Chalk River Nuclear Laboratories". Water Science and Technology 20, n.º 11-12 (1 de novembro de 1988): 81–87. http://dx.doi.org/10.2166/wst.1988.0269.
Texto completo da fonteCarpenter, Chris. "Visualization of CO2 EOR by Molecular Diffusion in Fractured Chalk". Journal of Petroleum Technology 67, n.º 07 (1 de julho de 2015): 122–24. http://dx.doi.org/10.2118/0715-0122-jpt.
Texto completo da fonteMathias, S. A., A. P. Butler, T. C. Atkinson, S. Kachi e R. S. Ward. "A parameter identifiability study of two chalk tracer tests". Hydrology and Earth System Sciences Discussions 3, n.º 4 (29 de agosto de 2006): 2437–71. http://dx.doi.org/10.5194/hessd-3-2437-2006.
Texto completo da fontePayne, S. S., M. H. Worthington, N. E. Odling e L. J. West. "Estimating permeability from field measurements of seismic attenuation in fractured chalk". Geophysical Prospecting 55, n.º 5 (setembro de 2007): 643–53. http://dx.doi.org/10.1111/j.1365-2478.2007.00643.x.
Texto completo da fonteArnon, Shai, Eilon Adar, Zeev Ronen, Alexander Yakirevich e Ronit Nativ. "Impact of microbial activity on the hydraulic properties of fractured chalk". Journal of Contaminant Hydrology 76, n.º 3-4 (fevereiro de 2005): 315–36. http://dx.doi.org/10.1016/j.jconhyd.2004.11.004.
Texto completo da fonteOdling, N. E., L. J. West, S. Hartmann e A. Kilpatrick. "Fractional flow in fractured chalk; a flow and tracer test revisited". Journal of Contaminant Hydrology 147 (abril de 2013): 96–111. http://dx.doi.org/10.1016/j.jconhyd.2013.02.003.
Texto completo da fonteNativ, R., E. M. Adar e A. Becker. "Designing a Monitoring Network for Contaminated Ground Water in Fractured Chalk". Ground Water 37, n.º 1 (janeiro de 1999): 38–47. http://dx.doi.org/10.1111/j.1745-6584.1999.tb00956.x.
Texto completo da fonteSagi, D. A., M. Arnhild e J. F. Karlo. "Quantifying fracture density and connectivity of fractured chalk reservoirs from core samples: implications for fluid flow". Geological Society, London, Special Publications 374, n.º 1 (26 de junho de 2013): 97–111. http://dx.doi.org/10.1144/sp374.16.
Texto completo da fonteKurtzman, Daniel, Ronit Nativ e Eilon M. Adar. "Flow and transport predictions during multi-borehole tests in fractured chalk using discrete fracture network models". Hydrogeology Journal 15, n.º 8 (24 de julho de 2007): 1629–42. http://dx.doi.org/10.1007/s10040-007-0205-x.
Texto completo da fonteBaniak, G. M., Z. Sayer, H. Patterson, R. Gooder, N. Laing e A. Love. "The Mungo Field, Blocks 22/20a and 23/16a, UK North Sea". Geological Society, London, Memoirs 52, n.º 1 (2020): 537–49. http://dx.doi.org/10.1144/m52-2018-82.
Texto completo da fonteAgarwal, B., H. Hermansen, J. E. Sylte e L. K. Thomas. "Reservoir Characterization of Ekofisk Field: A Giant, Fractured Chalk Reservoir in the Norwegian North Sea—History Match". SPE Reservoir Evaluation & Engineering 3, n.º 06 (1 de dezembro de 2000): 534–43. http://dx.doi.org/10.2118/68096-pa.
Texto completo da fonteBrown, David A. "The flow of water and displacement of hydrocarbons in fractured chalk reservoirs". Geological Society, London, Special Publications 34, n.º 1 (1987): 201–18. http://dx.doi.org/10.1144/gsl.sp.1987.034.01.14.
Texto completo da fonteGhasemi, M., W. Astutik, S. A. Alavian, C. H. Whitson, L. Sigalas, D. Olsen e V. S. Suicmez. "Impact of pressure on tertiary-CO2 flooding in a fractured chalk reservoir". Journal of Petroleum Science and Engineering 167 (agosto de 2018): 406–17. http://dx.doi.org/10.1016/j.petrol.2018.04.022.
Texto completo da fontePolak, Amir, Ronit Nativ e Rony Wallach. "Matrix diffusion in northern Negev fractured chalk and its correlation to porosity". Journal of Hydrology 268, n.º 1-4 (novembro de 2002): 203–13. http://dx.doi.org/10.1016/s0022-1694(02)00176-2.
Texto completo da fonteFOSTER, P. T., e P. R. RATTEY. "The evolution of a fractured chalk reservoir: Machar Oilfield, UK North Sea". Geological Society, London, Petroleum Geology Conference series 4, n.º 1 (1993): 1445–52. http://dx.doi.org/10.1144/0041445.
Texto completo da fonteDe Smedt, Florimond. "Analytical Solution for Fractional Well Flow in a Double-Porosity Aquifer with Fractional Transient Exchange between Matrix and Fractures". Water 14, n.º 3 (2 de fevereiro de 2022): 456. http://dx.doi.org/10.3390/w14030456.
Texto completo da fonteGhasemi, M., W. Astutik, S. Alavian, C. H. Whitson, L. Sigalas, D. Olsen e V. S. Suicmez. "Experimental and numerical investigation of tertiary-CO2 flooding in a fractured chalk reservoir". Journal of Petroleum Science and Engineering 164 (maio de 2018): 485–500. http://dx.doi.org/10.1016/j.petrol.2018.01.058.
Texto completo da fonteAbdalla, Fathy A., Barbara Reichert e Kai Witthueser. "Anthropogenic contaminants as tracers in fractured chalk aquifer: transport mechanisms and analytical modeling". Arabian Journal of Geosciences 4, n.º 5-6 (1 de setembro de 2009): 755–62. http://dx.doi.org/10.1007/s12517-009-0086-5.
Texto completo da fonteArnon, Shai, Zeev Ronen, Eilon Adar, Alexander Yakirevich e Ronit Nativ. "Two-dimensional distribution of microbial activity and flow patterns within naturally fractured chalk". Journal of Contaminant Hydrology 79, n.º 3-4 (outubro de 2005): 165–86. http://dx.doi.org/10.1016/j.jconhyd.2005.06.007.
Texto completo da fonteEVANS, N., P. RORISON e G. SYKES. "Banff Field, UK Central Graben – evaluation of a steeply dipping, fractured chalk reservoir". Geological Society, London, Petroleum Geology Conference series 5, n.º 1 (1999): 975–88. http://dx.doi.org/10.1144/0050975.
Texto completo da fonteButler, A. P., S. A. Mathias, A. J. Gallagher, D. W. Peach e A. T. Williams. "Analysis of flow processes in fractured chalk under pumped and ambient conditions (UK)". Hydrogeology Journal 17, n.º 8 (4 de junho de 2009): 1849–58. http://dx.doi.org/10.1007/s10040-009-0477-4.
Texto completo da fonteAspenes, Eirik, Geir Ersland, Arne Graue, Jim Stevens e Bernard A. Baldwin. "Wetting Phase Bridges Establish Capillary Continuity Across Open Fractures and Increase Oil Recovery in Mixed-Wet Fractured Chalk". Transport in Porous Media 74, n.º 1 (6 de novembro de 2007): 35–47. http://dx.doi.org/10.1007/s11242-007-9179-3.
Texto completo da fonte