Literatura científica selecionada sobre o tema "Fractals"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Fractals".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Fractals"
MITINA, OLGA V., e FREDERICK DAVID ABRAHAM. "THE USE OF FRACTALS FOR THE STUDY OF THE PSYCHOLOGY OF PERCEPTION: PSYCHOPHYSICS AND PERSONALITY FACTORS, A BRIEF REPORT". International Journal of Modern Physics C 14, n.º 08 (outubro de 2003): 1047–60. http://dx.doi.org/10.1142/s0129183103005182.
Texto completo da fonteЖихарев, Л., e L. Zhikharev. "Fractals In Three-Dimensional Space. I-Fractals". Geometry & Graphics 5, n.º 3 (28 de setembro de 2017): 51–66. http://dx.doi.org/10.12737/article_59bfa55ec01b38.55497926.
Texto completo da fonteЖихарев e L. Zhikharev. "Generalization to Three-Dimensional Space Fractals of Pythagoras and Koch. Part I". Geometry & Graphics 3, n.º 3 (30 de novembro de 2015): 24–37. http://dx.doi.org/10.12737/14417.
Texto completo da fonteHusain, Akhlaq, Manikyala Navaneeth Nanda, Movva Sitaram Chowdary e Mohammad Sajid. "Fractals: An Eclectic Survey, Part II". Fractal and Fractional 6, n.º 7 (2 de julho de 2022): 379. http://dx.doi.org/10.3390/fractalfract6070379.
Texto completo da fonteCherny, A. Yu, E. M. Anitas, V. A. Osipov e A. I. Kuklin. "Scattering from surface fractals in terms of composing mass fractals". Journal of Applied Crystallography 50, n.º 3 (1 de junho de 2017): 919–31. http://dx.doi.org/10.1107/s1600576717005696.
Texto completo da fonteFraboni, Michael, e Trisha Moller. "Fractals in the Classroom". Mathematics Teacher 102, n.º 3 (outubro de 2008): 197–99. http://dx.doi.org/10.5951/mt.102.3.0197.
Texto completo da fonteFraboni, Michael, e Trisha Moller. "Fractals in the Classroom". Mathematics Teacher 102, n.º 3 (outubro de 2008): 197–99. http://dx.doi.org/10.5951/mt.102.3.0197.
Texto completo da fonteJoy, Elizabeth K., e Dr Vikas Garg. "FRACTALS AND THEIR APPLICATIONS: A REVIEW". Journal of University of Shanghai for Science and Technology 23, n.º 07 (1 de agosto de 2021): 1509–17. http://dx.doi.org/10.51201/jusst/21/07277.
Texto completo da fonteChen, Yanguang. "Fractal Modeling and Fractal Dimension Description of Urban Morphology". Entropy 22, n.º 9 (30 de agosto de 2020): 961. http://dx.doi.org/10.3390/e22090961.
Texto completo da fonteBANAKH, T., e N. NOVOSAD. "MICRO AND MACRO FRACTALS GENERATED BY MULTI-VALUED DYNAMICAL SYSTEMS". Fractals 22, n.º 04 (12 de novembro de 2014): 1450012. http://dx.doi.org/10.1142/s0218348x14500121.
Texto completo da fonteTeses / dissertações sobre o assunto "Fractals"
Moraes, Leonardo Bastos. "Antenas impressas compactas para sistemas WIMAX". Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/3/3142/tde-26122013-161125/.
Texto completo da fonteAchieving high data rates in wireless communication is difficult. High data rates for wireless local area networks became commercially successful only around 2000. Wide area wireless networks are still designed and used primarily for low rate voice services. Despite many promising technologies, the reality of a wide area network that services many users at high data rates with reasonable bandwidth and power consumption, while maintaining high coverage and quality of service has not been achieved. The goal of the IEEE 802.16 was to design a wireless communication system processing to achieve a broadband internet for mobile users over a wide or metropolitan area. It is important to realize that WIMAX system have to confront similar challenges as existing cellular systems and their eventual performance will be bounded by the same laws of physics and information theory. In many areas of electrical engineering, miniaturization has been an important issue. Antennas are not an exception. After Wheeler initiated studies on the fundamental limits for miniaturization of antennas, this subject has been extensively discussed by several scholars and many contributions have been made. The advances of recent decades in the field of microelectronics enabled the miniaturization of components and provided the use of compact, lightweight, equipments with many features in commercial applications. Although circuit integration is a reality, the integration of a complete system, including its antenna, is still one of the major technological challenges. In the case of patch antennas, the search is for compact structures with increased bandwidth, due to the inherent narrowband characteristic of this type of antenna. In this work the focus is on a comparison between the Minkowski and the Koch Fractal Patch Antennas. Initially, patch antennas with conventional square and triangular geometries were simulated to present the same resonance frequency. After that, fractal Minkowski and Koch Island Loop antennas were implemented in the square and triangular geometries, respectively, to the third iteration. A comparison was made for two substrates of different permittivities FR-4 and DUROID 5870 at the frequencies of 2,4 GHz; 3,5 GHz; 5,0 GHz and 5,8 GHz. 8 Prototype antennas were built using FR-4 and DUROID 5870 to resonate at a frequency of 3,5 GHz to validate simulation results. The contribution of this work is the analysis of the advantages and disadvantages of each proposed fractal structure. According to the project requirements, the best option can be use a miniaturized antenna with a wider band, as in commercial projects. Particularly in military applications, a narrow band antenna can be a requirement, as sometimes maximum discretion in transmission is a paramount. An additional analysis was performed to verify which of the geometries fulfilled the miniaturization criteria of Hansen.
Дядечко, Алла Миколаївна, Алла Николаевна Дядечко, Alla Mykolaivna Diadechko, D. Tokar e V. R. Tarasenko. "Fractals". Thesis, Видавництво СумДУ, 2011. http://essuir.sumdu.edu.ua/handle/123456789/13436.
Texto completo da fonteZanotto, Ricardo Anselmo. "Estudo da geometria fractal clássica". Universidade Federal de Goiás, 2015. http://repositorio.bc.ufg.br/tede/handle/tede/6058.
Texto completo da fonteApproved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-08-31T19:47:01Z (GMT) No. of bitstreams: 2 Dissertação - Ricardo Anselmo Zanotto - 2015.pdf: 7706833 bytes, checksum: 26c6e884d0e3a03a3daebaa4ab5764a4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2016-08-31T19:47:01Z (GMT). No. of bitstreams: 2 Dissertação - Ricardo Anselmo Zanotto - 2015.pdf: 7706833 bytes, checksum: 26c6e884d0e3a03a3daebaa4ab5764a4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2015-12-12
Outro
This is a research about a part of the non-Euclidean geometry that has recently been very studied. It was addressed initial themes of the non-Euclidean geometry and it was exposed the studies abut fractals, its history, buildings and main fractals (known as classic fractals). It was also addressed the relation among the school years contents and how to use fractals; as well as some of its applications that have helped a lot of researches to spread and show better results.
Este trabalho é uma pesquisa sobre parte da geometria não euclidiana que há pouco vem sendo muito estudada, os fractais. Abordamos temas iniciais da geometria nãoeuclidiana e no decorrer do trabalho expomos nosso estudo sobre fractais, seu histórico, construções, principais fractais (conhecidos como fractais clássicos). Também abordamos relações entre conteúdos dos anos escolares e como usar fractais nos mesmos; como também algumas de suas aplicações que vem ajudando muitas pesquisas a se difundirem e apresentarem melhores resultados.
LONG, LUN-HAI. "Fractals arithmetiques". Université Louis Pasteur (Strasbourg) (1971-2008), 1993. http://www.theses.fr/1993STR13249.
Texto completo da fonteJoanpere, Salvadó Meritxell. "Fractals and Computer Graphics". Thesis, Linköpings universitet, Matematiska institutionen, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-68876.
Texto completo da fonteMucheroni, Laís Fernandes [UNESP]. "Dimensão de Hausdorff e algumas aplicações". Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/151653.
Texto completo da fonteApproved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-19T20:08:28Z (GMT) No. of bitstreams: 1 mucheroni_lf_me_rcla.pdf: 1067574 bytes, checksum: 952e3477ef0efeafd01d052547e8f2e5 (MD5)
Made available in DSpace on 2017-09-19T20:08:28Z (GMT). No. of bitstreams: 1 mucheroni_lf_me_rcla.pdf: 1067574 bytes, checksum: 952e3477ef0efeafd01d052547e8f2e5 (MD5) Previous issue date: 2017-08-18
Intuitivamente, um ponto tem dimensão 0, uma reta tem dimensão 1, um plano tem dimensão 2 e um cubo tem dimensão 3. Porém, na geometria fractal encontramos objetos matemáticos que possuem dimensão fracionária. Esses objetos são denominados fractais cujo nome vem do verbo "frangere", em latim, que significa quebrar, fragmentar. Neste trabalho faremos um estudo sobre o conceito de dimensão, definindo dimensão topológica e dimensão de Hausdorff. O objetivo deste trabalho é, além de apresentar as definições de dimensão, também apresentar algumas aplicações da dimensão de Hausdorff na geometria fractal.
We know, intuitively, that the dimension of a dot is 0, the dimension of a line is 1, the dimension of a square is 2 and the dimension of a cube is 3. However, in the fractal geometry we have objects with a fractional dimension. This objects are called fractals whose name comes from the verb frangere, in Latin, that means breaking, fragmenting. In this work we will study about the concept of dimension, defining topological dimension and Hausdorff dimension. The purpose of this work, besides presenting the definitions of dimension, is to show an application of the Hausdorff dimension on the fractal geometry.
Berbiche, Amine. "Propagation d'ondes acoustiques dans les milieux poreux fractals". Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4758.
Texto completo da fonteThe action integral minimization method (variational principle) provides the wave propagation equations. This method has been generalized to fractal dimensional porous media to study the acoustic propagation in the time domain, based on the equivalent fluid model. The resulting equation rewritten in the frequency domain represents a generalization for the Helmholtz equation. As part of the Allard-Johnson model, the propagation equation was solved analytically in the time domain, for both high and low frequencies fields. The resolution was made by the method of the Laplace transform, and focused on a semi-infinite porous medium. It was found that the wave velocity depends on the fractal dimension.For a fractal porous material of finite thickness which receives an acoustic wave at normal incidence, the Euler conditions were used to determine the reflected and transmitted fields. The resolution of the direct problem was made in the time domain by the method of the Laplace transform, and through the use of the Mittag-Leffler functions. The inverse problem was solved by the method of minimizing the least squares sense. Tests have been performed successfully on experimental data; programs written from the formalism developed in this work have allowed finding the acoustic parameters of porous foams, in the fields of high and low frequencies
Prehl, geb Balg Janett. "Diffusion on Fractals". Master's thesis, Universitätsbibliothek Chemnitz, 2007. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200701033.
Texto completo da fonteIn dieser Arbeit untersuchen wir anomale Diffusion auf Fraktalen unter Einwirkung eines statisches äußeres Feldes. Wir benutzen die Mastergleichung, um die Wahrscheinlichkeitsverteilung der Teilchen zu berechnen, um daraus wichtige Größen wie das mittlere Abstandsquadrat zu bestimmen. Wir wenden unterschiedliche Feldstärken bei verschiedenen regelmäßigen Sierpinski-Teppichen an und erhalten maximale Driftgeschwindigkeiten für schwache Feldstärken. Über ~t^{2/d_w} bestimmen wir die Random-Walk-Dimension d_w als d_w<2. Dieser Wert für d_w entspricht der Superdiffusion, obwohl der Diffusionsprozess durch Strukturen des Teppichs, wie Sackgassen, behindert wird. Es schient, dass dies das Ergebnis zweier konkurrierender Effekte ist, die durch das Anlegen eines äußeren Feldes entstehen. Einerseits bewegen sich die Teilchen bevorzugt entlang der Feldrichtung. Andererseits gelangen einige Teilchen in Sackgassen. Um die Sackgassen, die in Feldrichtung liegen, zu verlassen, müssen sich die Teilchen entgegen der Feldrichtung bewegen. Somit sind die Teilchen eine gewisse Zeit in der Sackgasse gefangen. Infolge der durch das äußere Feld beschleunigten und der gefangenen Teilchen, verbreitert sich die Wahrscheinlichkeitsverteilung der Teilchen und somit ist d_w<2
Yin, Qinghe. "Fractals and sumsets". Title page, contents and abstract only, 1993. http://web4.library.adelaide.edu.au/theses/09PH/09phy51.pdf.
Texto completo da fonteBeaver, Philip Frederick. "Fractals and chaos". Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/28232.
Texto completo da fonteLivros sobre o assunto "Fractals"
A, Pickover Clifford, ed. Fractal horizons: The future use of fractals. New York: St. Martin's Press, 1996.
Encontre o texto completo da fonteFeder, Jens. Fractals. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6.
Texto completo da fonteDekking, Michel, Jacques Lévy Véhel, Evelyne Lutton e Claude Tricot, eds. Fractals. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0873-3.
Texto completo da fonteO'Connell, Richard. Fractals. Newport: Atlantis Editions, 2002.
Encontre o texto completo da fonteStephen, Pollock, e British Broadcasting Corporation, eds. Fractals. [London]: [British Broadcasting Corporation, 1990.
Encontre o texto completo da fonteFeder, Jens. Fractals. New York: Plenum Press, 1988.
Encontre o texto completo da fonteFeder, Jens. Fractals. New York, NY: Plenum Press, 1988.
Encontre o texto completo da fonteMac Cormac, Earl, e Maxim I. Stamenov, eds. Fractals of Brain, Fractals of Mind. Amsterdam: John Benjamins Publishing Company, 1996. http://dx.doi.org/10.1075/aicr.7.
Texto completo da fonteBarnsley, Michael. Fractals everywhere. 2a ed. Boston: Academic Press, 1993.
Encontre o texto completo da fonteBarnsley, Michael. Fractals everywhere. Mineola, N.Y: Dover Publications, 2012.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Fractals"
Hergarten, Stefan. "Fractals and Fractal Distributions". In Self-Organized Criticality in Earth Systems, 1–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04390-5_1.
Texto completo da fonteCourtens, Eric, e René Vacher. "Fractons in Real Fractals". In Random Fluctuations and Pattern Growth: Experiments and Models, 20–26. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2653-0_4.
Texto completo da fonteFeder, Jens. "Introduction". In Fractals, 1–5. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_1.
Texto completo da fonteFeder, Jens. "Self-Similarity and Self-Affinity". In Fractals, 184–92. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_10.
Texto completo da fonteFeder, Jens. "Wave-Height Statistics". In Fractals, 193–99. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_11.
Texto completo da fonteFeder, Jens. "The Perimeter-Area Relation". In Fractals, 200–211. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_12.
Texto completo da fonteFeder, Jens. "Fractal Surfaces". In Fractals, 212–28. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_13.
Texto completo da fonteFeder, Jens. "Observations of Fractal Surfaces". In Fractals, 229–43. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_14.
Texto completo da fonteFeder, Jens. "The Fractal Dimension". In Fractals, 6–30. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_2.
Texto completo da fonteFeder, Jens. "The Cluster Fractal Dimension". In Fractals, 31–40. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Fractals"
Wang, Yan. "3D Fractals From Periodic Surfaces". In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-29081.
Texto completo da fonte"BACK MATTER". In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_bmatter.
Texto completo da fonteWEST, BRUCE J. "MODELING FRACTAL DYNAMICS". In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0002.
Texto completo da fonteMAINZER, KLAUS. "COMPLEXITY IN NATURE AND SOCIETY: Complexity Management in the Age of Globalization". In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0010.
Texto completo da fontePEARSON, MICHAEL. "FRACTALS, COMPLEXITY AND CHAOS IN SUPPLY CHAIN NETWORKS". In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0011.
Texto completo da fonteSING, BERND. "ITERATED FUNCTION SYSTEMS IN MIXED EUCLIDEAN AND 𝔭-ADIC SPACES". In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0024.
Texto completo da fonteLIEBOVITCH, L. S., V. K. JIRSA e L. A. SHEHADEH. "STRUCTURE OF GENETIC REGULATORY NETWORKS: EVIDENCE FOR SCALE FREE NETWORKS". In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0001.
Texto completo da fonteGORENFLO, RUDOLF, e FRANCESCO MAINARDI. "FRACTIONAL RELAXATION OF DISTRIBUTED ORDER". In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0003.
Texto completo da fonteALLEGRINI, P., F. BARBI, P. GRIGOLINI e P. PARADISI. "FRACTIONAL TIME: DISHOMOGENOUS POISSON PROCESSES VS. HOMOGENEOUS NON-POISSON PROCESSES". In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0004.
Texto completo da fontePAPASIMAKIS, NIKITAS, e FOTINI PALLIKARI. "MARKOV MEMORY IN MULTIFRACTAL NATURAL PROCESSES". In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0005.
Texto completo da fonteRelatórios de organizações sobre o assunto "Fractals"
Haussermann, John W. An Introduction to Fractals and Chaos. Fort Belvoir, VA: Defense Technical Information Center, junho de 1989. http://dx.doi.org/10.21236/ada210257.
Texto completo da fonteDriscoll, John. Fractals as Basis for Design and Critique. Portland State University Library, janeiro de 2000. http://dx.doi.org/10.15760/etd.7059.
Texto completo da fonteMoore, Charles. A Quantitative Description of Soil Microstructure Using Fractals. Fort Belvoir, VA: Defense Technical Information Center, julho de 1992. http://dx.doi.org/10.21236/ada337825.
Texto completo da fonteKostoff, Ronald N., Dustin Johnson, J. A. Del Rio, Louis A. Bloomfield, Michael F. Shlesinger e Guido Malpohl. Duplicate Publication and 'Paper Inflation' in the Fractals Literature. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2005. http://dx.doi.org/10.21236/ada440622.
Texto completo da fonteOppenheim, Alan V., e Gregory W. Wornell. Signal Analysis, Synthesis and Processing Using Fractals and Wavelets. Fort Belvoir, VA: Defense Technical Information Center, novembro de 1995. http://dx.doi.org/10.21236/ada305490.
Texto completo da fonteRao, C. R., e S. R. Kumara. Shape and Image Analysis using Neural Networks Fractals and Wavelets. Fort Belvoir, VA: Defense Technical Information Center, maio de 2000. http://dx.doi.org/10.21236/ada392772.
Texto completo da fonteYortsos, Y. C., e J. A. Acuna. Numerical construction and flow simulation in networks of fractures using fractals. Office of Scientific and Technical Information (OSTI), novembro de 1991. http://dx.doi.org/10.2172/6283188.
Texto completo da fontePardo Igúzquiza, Eulogio. Karst y fractales. Ilustre Colegio Oficial de Geólogos, dezembro de 2022. http://dx.doi.org/10.21028/eog.2022.12.05.
Texto completo da fonteAminzadeh, Fred, Charles Sammis, Mohammad Sahimi e David Okaya. Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy. Office of Scientific and Technical Information (OSTI), abril de 2015. http://dx.doi.org/10.2172/1185274.
Texto completo da fonteFisher, Yuval, e Albert Lawrence. Fractal Image Encoding. Fort Belvoir, VA: Defense Technical Information Center, março de 1992. http://dx.doi.org/10.21236/ada248003.
Texto completo da fonte