Siga este link para ver outros tipos de publicações sobre o tema: Four wave mixing microscopy.

Artigos de revistas sobre o tema "Four wave mixing microscopy"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Four wave mixing microscopy".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Kim, Hyunmin, Garnett W. Bryant e Stephan J. Stranick. "Superresolution four-wave mixing microscopy". Optics Express 20, n.º 6 (28 de fevereiro de 2012): 6042. http://dx.doi.org/10.1364/oe.20.006042.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Wang, Yong, Chia-Yu Lin, Alexei Nikolaenko, Varun Raghunathan e Eric O. Potma. "Four-wave mixing microscopy of nanostructures". Advances in Optics and Photonics 3, n.º 1 (10 de setembro de 2010): 1. http://dx.doi.org/10.1364/aop.3.000001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Min, Wei, Sijia Lu, Markus Rueckel, Gary R. Holtom e X. Sunney Xie. "Near-Degenerate Four-Wave-Mixing Microscopy". Nano Letters 9, n.º 6 (10 de junho de 2009): 2423–26. http://dx.doi.org/10.1021/nl901101g.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Wang, Jianjun, Xi Zhang, Junbo Deng, Xing Hu, Yun Hu, Jiao Mao, Ming Ma et al. "Simplified Near-Degenerate Four-Wave-Mixing Microscopy". Molecules 26, n.º 17 (26 de agosto de 2021): 5178. http://dx.doi.org/10.3390/molecules26175178.

Texto completo da fonte
Resumo:
Four-wave-mixing microscopy is widely researched in both biology and medicine. In this paper, we present a simplified near-degenerate four-wave-mixing microscopy (SNDFWM). An ultra-steep long-pass filter is utilized to produce an ultra-steep edge on the spectrum of a femtosecond pulse, and a super-sensitive four-wave-mixing (FWM) signal can be generated via an ultra-steep short-pass filter. Compared with the current state-of-the-art FWM microscopy, this SNDFWM microscopy has the advantages of simpler experimental apparatus, lower cost, and easier operation. We demonstrate that this SNDFWM microscopy has high sensitivity and high spatial resolution in both nanowires and biological tissues. We also show that the SNDFWM microscopy can achieve an ultra-sensitive detection based on the electron-resonance effect. This method might find an important application in tracking of nano drugs in vivo.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Potma, Eric O., Wim P. de Boeij e Douwe A. Wiersma. "Nonlinear coherent four-wave mixing in optical microscopy". Journal of the Optical Society of America B 17, n.º 10 (1 de outubro de 2000): 1678. http://dx.doi.org/10.1364/josab.17.001678.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Pope, Iestyn, Nuno G. C. Ferreira, Peter Kille, Wolfgang Langbein e Paola Borri. "Background-free four-wave mixing microscopy of small gold nanoparticles inside a multi-cellular organ". Applied Physics Letters 122, n.º 15 (10 de abril de 2023): 153701. http://dx.doi.org/10.1063/5.0140651.

Texto completo da fonte
Resumo:
The ability to detect small metallic nanoparticles by optical microscopy inside environmentally relevant species may have a wide impact for ecotoxicology studies. Here, we demonstrate four-wave mixing microscopy on individual small gold nanoparticles inside the hepatopancreas of Oniscus Asellus, a terrestrial isopod, which ingests metals found in the soil. After the exposure to food containing 10 nm radius gold nanoparticles, hepatopancreas tubules were collected, and nanoparticles were imaged by four-wave mixing microscopy with high contrast, locating them with sub-cellular resolution in the volume, despite the significant light scattering from these multi-cellular organs. Notably, the ultrafast dynamics of the four-wave-mixing non-linearity of gold nanoparticles resonantly excited and probed at their localized surface plasmon allows them to be distinguished from other metal deposits in the hepatopancreas, which manifest as a long-lived photothermal contrast. Our findings bring unexpected insight into the location of gold nanoparticles in relation to the cell types forming the hepatopancreas. Considering its simplicity, volumetric imaging capabilities, specificity, and compatibility with living cell studies, four-wave mixing microscopy holds great potential to investigate the fate of metal nanoparticles inside biological systems.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Smith, Brad C., Bachana Lomsadze e Steven T. Cundiff. "High-speed hyperspectral four-wave-mixing microscopy with frequency combs". Optics Letters 46, n.º 15 (21 de julho de 2021): 3556. http://dx.doi.org/10.1364/ol.428172.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Brocious, Jordan, e Eric O. Potma. "Lighting up micro-structured materials with four-wave mixing microscopy". Materials Today 16, n.º 9 (setembro de 2013): 344–50. http://dx.doi.org/10.1016/j.mattod.2013.08.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Wang, Yong, Xuejun Liu, Aaron R. Halpern, Kyunghee Cho, Robert M. Corn e Eric O. Potma. "Wide-field, surface-sensitive four-wave mixing microscopy of nanostructures". Applied Optics 51, n.º 16 (24 de maio de 2012): 3305. http://dx.doi.org/10.1364/ao.51.003305.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Tsuchiya, Tomoki, e Chikara Egami. "Degenerate Four-Wave Mixing in Phycoerythrin Dye-Doped Nanoparticles". International Journal of Optics 2021 (17 de junho de 2021): 1–6. http://dx.doi.org/10.1155/2021/5568693.

Texto completo da fonte
Resumo:
We have generated a phase-conjugate (PC) wave from nanoparticles with a new microscopic system proposed. The microscope includes a confocal system with a degenerate four-wave mixing (DFWM) system, which plays a major role in generating the phase-conjugate wave to compensate phase distortion in the optical path toward targets. The proposed optical system detects feeble PC wave and imagines 3D particles while improving the inplane contrast resolution of the microscopic image.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Matsunaga, Naoya, e Egami Chikara. "Polymeric particle phase conjugator using degenerate four-wave mixing confocal microscopy". Molecular Crystals and Liquid Crystals 659, n.º 1 (12 de dezembro de 2017): 84–88. http://dx.doi.org/10.1080/15421406.2018.1450933.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Masia, Francesco, Wolfgang Langbein e Paola Borri. "Multiphoton microscopy based on four-wave mixing of colloidal quantum dots". Applied Physics Letters 93, n.º 2 (14 de julho de 2008): 021114. http://dx.doi.org/10.1063/1.2959737.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Ozeki, Yasuyuki, Takehito Kawasumi e Kazuyoshi Itoh. "Depth-resolved observation of photoelastic effect by four-wave mixing microscopy". Optical Review 16, n.º 2 (março de 2009): 167–69. http://dx.doi.org/10.1007/s10043-009-0028-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Weeks, Tyler, Sebastian Wachsmann-Hogiu e Thomas Huser. "Raman Microscopy based on Doubly-Resonant Four-Wave Mixing (DR-FWM)". Optics Express 17, n.º 19 (9 de setembro de 2009): 17044. http://dx.doi.org/10.1364/oe.17.017044.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Giannakopoulou, Naya, Joseph B. Williams, Paul R. Moody, Edward J. Sayers, Johannes P. Magnusson, Iestyn Pope, Lukas Payne et al. "Four-wave-mixing microscopy reveals non-colocalisation between gold nanoparticles and fluorophore conjugates inside cells". Nanoscale 12, n.º 7 (2020): 4622–35. http://dx.doi.org/10.1039/c9nr08512b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Ishii, Makiko, Susumu Uchiyama, Yasuyuki Ozeki, Sin'ichiro Kajiyama, Kazuyoshi Itoh e Kiichi Fukui. "Visualization of Oil Body Distribution inJatropha curcasL. by Four-Wave Mixing Microscopy". Japanese Journal of Applied Physics 52, n.º 6R (1 de junho de 2013): 062403. http://dx.doi.org/10.7567/jjap.52.062403.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Kim, Hyunmin, Tatyana Sheps, Philip G. Collins e Eric O. Potma. "Nonlinear Optical Imaging of Individual Carbon Nanotubes with Four-Wave-Mixing Microscopy". Nano Letters 9, n.º 8 (12 de agosto de 2009): 2991–95. http://dx.doi.org/10.1021/nl901412x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Masia, Francesco, Wolfgang Langbein, Peter Watson e Paola Borri. "Resonant four-wave mixing of gold nanoparticles for three-dimensional cell microscopy". Optics Letters 34, n.º 12 (8 de junho de 2009): 1816. http://dx.doi.org/10.1364/ol.34.001816.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Munhoz, Fabiana, Hervé Rigneault e Sophie Brasselet. "Polarization-resolved four-wave mixing microscopy for structural imaging in thick tissues". Journal of the Optical Society of America B 29, n.º 6 (1 de junho de 2012): 1541. http://dx.doi.org/10.1364/josab.29.001541.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Lefrancois, Simon, Dan Fu, Gary R. Holtom, Lingjie Kong, William J. Wadsworth, Patrick Schneider, Robert Herda, Armin Zach, X. Sunney Xie e Frank W. Wise. "Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy". Optics Letters 37, n.º 10 (9 de maio de 2012): 1652. http://dx.doi.org/10.1364/ol.37.001652.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Wu, Jian, Dao Xiang, Ching-Chung Hsueh, Jörg Rottler e Reuven Gordon. "In Situ Accurate Analysis of Colloidal Nanoparticles via Four Wave Mixing". MRS Advances 3, n.º 14 (2018): 707–9. http://dx.doi.org/10.1557/adv.2017.638.

Texto completo da fonte
Resumo:
ABSTRACTFour-wave mixing (FWM) is used to measure the vibrational modes of nanoparticles in solution. The vibrations give information about the particle size, material properties and shape. This method has been used for in-situ monitoring of the growth of nanoparticles with high accuracy, as confirmed by electron microscopy analysis. We observe a threshold in the FWM signal which we believe is from a cavity forming around the nanoparticles that reduces viscous damping. We have observed this effect in molecular dynamics simulations as well.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Aumanen, Jukka, Andreas Johansson, Olli Herranen, Pasi Myllyperkiö e Mika Pettersson. "Local photo-oxidation of individual single walled carbon nanotubes probed by femtosecond four wave mixing imaging". Physical Chemistry Chemical Physics 17, n.º 1 (2015): 209–16. http://dx.doi.org/10.1039/c4cp04026k.

Texto completo da fonte
Resumo:
Non-linear photo-oxidation of single walled carbon nanotubes (SWCNTs) is induced by femtosecond laser pulses and imaged by four wave mixing microscopy. Oxidation is localized on an individual SWCNT within optical resolution.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Gottschall, Thomas, Martin Baumgartl, Aude Sagnier, Jan Rothhardt, Cesar Jauregui, Jens Limpert e Andreas Tünnermann. "Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing". Optics Express 20, n.º 11 (11 de maio de 2012): 12004. http://dx.doi.org/10.1364/oe.20.012004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Mahou, Pierre, Nicolas Olivier, Guillaume Labroille, Louise Duloquin, Jean-Marc Sintes, Nadine Peyriéras, Renaud Legouis, Delphine Débarre e Emmanuel Beaurepaire. "Combined third-harmonic generation and four-wave mixing microscopy of tissues and embryos". Biomedical Optics Express 2, n.º 10 (26 de setembro de 2011): 2837. http://dx.doi.org/10.1364/boe.2.002837.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Koivistoinen, Juha, Jukka Aumanen, Vesa-Matti Hiltunen, Pasi Myllyperkiö, Andreas Johansson e Mika Pettersson. "Real-time monitoring of graphene patterning with wide-field four-wave mixing microscopy". Applied Physics Letters 108, n.º 15 (11 de abril de 2016): 153112. http://dx.doi.org/10.1063/1.4946854.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Jun, Chang Su, Byoung Yoon Kim, Ju Hyun Park, Jae Yong Lee, Eun Seong Lee e Dong-Il Yeom. "Investigation of a four-wave mixing signal generated in fiber-delivered CARS microscopy". Applied Optics 49, n.º 20 (6 de julho de 2010): 3916. http://dx.doi.org/10.1364/ao.49.003916.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Biswas, Rabindra, Jayanta Deka, Keshav kumar Jha, A. Vishnu Praveen, A. S. Lal Krishna, Sruti Menon e Varun Raghunathan. "Resonant four-wave mixing microscopy on silicon-on-insulator based zero-contrast gratings". OSA Continuum 2, n.º 10 (27 de setembro de 2019): 2864. http://dx.doi.org/10.1364/osac.2.002864.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Ciesielski, Richard, Alberto Comin, Matthias Handloser, Kevin Donkers, Giovanni Piredda, Antonio Lombardo, Andrea C. Ferrari e Achim Hartschuh. "Graphene Near-Degenerate Four-Wave Mixing for Phase Characterization of Broadband Pulses in Ultrafast Microscopy". Nano Letters 15, n.º 8 (6 de julho de 2015): 4968–72. http://dx.doi.org/10.1021/acs.nanolett.5b00893.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Jakubczyk, Tomasz, Valentin Delmonte, Maciej Koperski, Karol Nogajewski, Clément Faugeras, Wolfgang Langbein, Marek Potemski e Jacek Kasprzak. "Radiatively Limited Dephasing and Exciton Dynamics in MoSe2 Monolayers Revealed with Four-Wave Mixing Microscopy". Nano Letters 16, n.º 9 (22 de agosto de 2016): 5333–39. http://dx.doi.org/10.1021/acs.nanolett.6b01060.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Baumgartl, Martin, Thomas Gottschall, Javier Abreu-Afonso, Antonio Díez, Tobias Meyer, Benjamin Dietzek, Manfred Rothhardt, Jürgen Popp, Jens Limpert e Andreas Tünnermann. "Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing". Optics Express 20, n.º 19 (29 de agosto de 2012): 21010. http://dx.doi.org/10.1364/oe.20.021010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Blandin, Pierre, Frederic Druon, Marc Hanna, Sandrine Lévêque-Fort, Christelle Lesvigne, Vincent Couderc, Philippe Leproux, Alessandro Tonello e Patrick Georges. "Picosecond polarized supercontinuum generation controlled by intermodal four-wave mixing for fluorescence lifetime imaging microscopy". Optics Express 16, n.º 23 (31 de outubro de 2008): 18844. http://dx.doi.org/10.1364/oe.16.018844.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Wang, Zhiyong, Liang Gao, Pengfei Luo, Yaliang Yang, Ahmad A. Hammoudi, Kelvin K. Wong e Stephen T. C. Wong. "Coherent anti-Stokes Raman scattering microscopy imaging with suppression of four-wave mixing in optical fibers". Optics Express 19, n.º 9 (11 de abril de 2011): 7960. http://dx.doi.org/10.1364/oe.19.007960.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Chen, Bi-Chang, e Sang-Hyun Lim. "Three-dimensional imaging of director field orientations in liquid crystals by polarized four-wave mixing microscopy". Applied Physics Letters 94, n.º 17 (27 de abril de 2009): 171911. http://dx.doi.org/10.1063/1.3127535.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Kawasumi, Takehito, Yasuyuki Ozeki e Kazuyoshi Itoh. "Analysis and Compensation for Artifacts in Three-Dimensional Refractive Index Profiling by Four-Wave Mixing Microscopy". Japanese Journal of Applied Physics 49, n.º 8 (20 de agosto de 2010): 082701. http://dx.doi.org/10.1143/jjap.49.082701.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Garrett, Natalie, Matt Whiteman e Julian Moger. "Imaging the uptake of gold nanoshells in live cells using plasmon resonance enhanced four wave mixing microscopy". Optics Express 19, n.º 18 (22 de agosto de 2011): 17563. http://dx.doi.org/10.1364/oe.19.017563.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

OKUMURA, SATORU, e TETSUO OGAWA. "MICROSCOPIC THEORY OF FOUR-WAVE-MIXING PROCESSES WITH AN EXCITON-BOSONIZATION METHOD". Nonlinear Optics 29, n.º 10-12 (1 de dezembro de 2002): 571–77. http://dx.doi.org/10.1080/1058726021000045324.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Isobe, Keisuke, Yasuyuki Ozeki, Takehito Kawasumi, Shogo Kataoka, Shin'ichiro Kajiyama, Kiichi Fukui e Kazuyoshi Itoh. "Highly sensitive spectral interferometric four-wave mixing microscopy near the shot noise limit and its combination with two-photon excited fluorescence microscopy". Optics Express 14, n.º 23 (2006): 11204. http://dx.doi.org/10.1364/oe.14.011204.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

KELLER, O. "QUANTUM DOTS OF LIGHT". Journal of Nonlinear Optical Physics & Materials 05, n.º 01 (janeiro de 1996): 109–32. http://dx.doi.org/10.1142/s0218863596000118.

Texto completo da fonte
Resumo:
Basic ingredients of a microscopic theory describing the degenerate four-wave mixing of the outgoing field from a mesoscopic source particle were established. Starting from many-body theory and selfenergy quantum electrodynamics it is argued that the best spatial confinement one might hope to obtain of the source field is given by the extension of the transverse part of the current density distribution induced in the mesoscopic particle. Taking into account the phaseconjugation of evanescent components of the source field, the existence of so-called quantum dots of light having a subwavelength extension is predicted. Using the outgoing field from the tip of an optical near-field microscope in combination with a phaseconjugating mirror exhibiting a sufficiently long memory time light dots can be made experimentally. A new nonlocal nonlinear response tensor enabling one to study the four-wave mixing process of the local field itself is presented.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Ishibashi, Daiki, e Chikara Egami. "Three-dimensional measurement of chloroplast with degenerate four-wave mixing nonlinear confocal microscope". Molecular Crystals and Liquid Crystals 654, n.º 1 (2 de setembro de 2017): 164–68. http://dx.doi.org/10.1080/15421406.2017.1358036.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Bridonneau, Aglaé, Ruiling Weng, Mingzhao Shi, Christophe Dupuis, Anne-Lise Coutrot, Philippe Delaye e Sylvie Lebrun. "Rapid and non-destructive nanofiber diameter measurement using Spontaneous Four Wave Mixing". EPJ Web of Conferences 309 (2024): 12008. http://dx.doi.org/10.1051/epjconf/202430912008.

Texto completo da fonte
Resumo:
We will present a rapid and non-destructive technique for the measurement of the mean diameter of a silica nanofiber using the wavelength position of the signal peak in a spontaneous four wave mixing experiment. The nanofiber diameter can be characterized in a range going at least from 650 to 1250nm. Several nanofibers were characterized, and the measured diameter show a good accordance with the one obtained using a Scanning Electron Microscope. The technique is simple to use and has even the potential to be implemented in situ in order to realize a diameter measurement during the pulling of the nanofiber for a better control of the final diameter of the nanofiber.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Isobe, Keisuke, Takehito Kawasumi, Takayuki Tamaki, Shogo Kataoka, Yasuyuki Ozeki e Kazuyoshi Itoh. "Three-Dimensional Profiling of Refractive Index Distribution inside Transparent Materials by Use of Nonresonant Four-Wave Mixing Microscopy". Applied Physics Express 1 (8 de fevereiro de 2008): 022006. http://dx.doi.org/10.1143/apex.1.022006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Cartella, A., T. F. Nova, M. Fechner, R. Merlin e A. Cavalleri. "Parametric amplification of optical phonons". Proceedings of the National Academy of Sciences 115, n.º 48 (14 de novembro de 2018): 12148–51. http://dx.doi.org/10.1073/pnas.1809725115.

Texto completo da fonte
Resumo:
We use coherent midinfrared optical pulses to resonantly excite large-amplitude oscillations of the Si–C stretching mode in silicon carbide. When probing the sample with a second pulse, we observe parametric optical gain at all wavelengths throughout the reststrahlen band. This effect reflects the amplification of light by phonon-mediated four-wave mixing and, by extension, of optical-phonon fluctuations. Density functional theory calculations clarify aspects of the microscopic mechanism for this phenomenon. The high-frequency dielectric permittivity and the phonon oscillator strength depend quadratically on the lattice coordinate; they oscillate at twice the frequency of the optical field and provide a parametric drive for the lattice mode. Parametric gain in phononic four-wave mixing is a generic mechanism that can be extended to all polar modes of solids, as a means to control the kinetics of phase transitions, to amplify many-body interactions or to control phonon-polariton waves.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Raghunathan, Varun, Alexei Nikolaenko, Chao-Yu Chung e Eric O. Potma. "Amplitude and phase of shaped nonlinear excitation fields in a four-wave mixing microscope". Applied Physics Letters 99, n.º 17 (24 de outubro de 2011): 171114. http://dx.doi.org/10.1063/1.3657148.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Selm, R., G. Krauss, A. Leitenstorfer e A. Zumbusch. "Simultaneous second-harmonic generation, third-harmonic generation, and four-wave mixing microscopy with single sub-8 fs laser pulses". Applied Physics Letters 99, n.º 18 (31 de outubro de 2011): 181124. http://dx.doi.org/10.1063/1.3658456.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Krabbendam, Rick, Martin Pool, Liesbeth G. de Vries, Herman L. Offerhaus, Jennifer L. Herek e Cees Otto. "Hybrid imaging of fluorescently labeled cancer drugs and label-free four-wave mixing microscopy of cancer cells and tissues". Journal of Biomedical Optics 20, n.º 8 (13 de agosto de 2015): 086006. http://dx.doi.org/10.1117/1.jbo.20.8.086006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Voss, Tobias, Ilja Rückmann, Jürgen Gutowski, Vollrath Martin Axt e Tilmann Kuhn. "Coherent control of exciton–biexciton beats: direction selectivity of four-wave-mixing signals in experiment and microscopic theory". physica status solidi (b) 243, n.º 10 (agosto de 2006): 2410–13. http://dx.doi.org/10.1002/pssb.200668068.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Kamanina, N. V., S. V. Likhomanova, Yu A. Zubtcova, A. A. Kamanin e A. Pawlicka. "Functional Smart Dispersed Liquid Crystals for Nano- and Biophotonic Applications: Nanoparticles-Assisted Optical Bioimaging". Journal of Nanomaterials 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/8989250.

Texto completo da fonte
Resumo:
Functional nematic liquid crystal structures doped with nano- and bioobjects have been investigated. The self-assembling features and the photorefractive parameters of the structured liquid crystals have been comparatively studied via microscopy and laser techniques. Fullerene, quantum dots, carbon nanotubes, DNA, and erythrocytes have been considered as the effective nano- and biosensitizers of the LC mesophase. The holographic recording technique based on four-wave mixing of the laser beams has been used to investigate the laser-induced change of the refractive index in the nano- and bioobjects-doped liquid crystal cells. The special accent has been given to novel nanostructured relief with vertically aligned carbon nanotubes at the interface: solid substrate-liquid crystal mesophase. It has been shown that this nanostructured relief influences the orienting ability of the liquid crystal molecules with good advantage. As a result, it provokes the orientation of the DNA. The modified functional liquid crystal materials have been proposed as the perspective systems for both the photonics and biology as well as the medical applications.
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Duppen, Koos, Foppe de Haan, Erik T. J. Nibbering e Douwe A. Wiersma. "Chirped four-wave mixing". Physical Review A 47, n.º 6 (1 de junho de 1993): 5120–37. http://dx.doi.org/10.1103/physreva.47.5120.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Tang, N., e J. P. Partanen. "Four-wave-mixing interferometer". Optics Letters 21, n.º 15 (1 de agosto de 1996): 1108. http://dx.doi.org/10.1364/ol.21.001108.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

YANG YAN-QIANG, FEI HAO-SHENG, WEI ZHEN-QIAN e SUN GUI-JUAN. "EXCITED DEGENERATE FOUR-WAVE MIXING". Acta Physica Sinica 45, n.º 2 (1996): 210. http://dx.doi.org/10.7498/aps.45.210.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia