Artigos de revistas sobre o tema "Formation de liaisons C-S"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Formation de liaisons C-S".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Top, Siden, e Gérard Jaouen. "Formation de liaison CC par couplage réducteur d'ions carbéniums arène chrome tricarbonyle". Journal of Organometallic Chemistry 336, n.º 1-2 (dezembro de 1987): 143–51. http://dx.doi.org/10.1016/0022-328x(87)87164-4.
Texto completo da fonteHiemstra, Henk, Floris P. Rutjes, Sape S. Kinderman, Jan H. van Maarseveen e Hans E. Schoemaker. "C-C Bond Formation viaN-Phosphoryliminium Ions". Synthesis 2004, n.º 09 (2004): 1413–18. http://dx.doi.org/10.1055/s-2004-822376.
Texto completo da fontePeng, Kang, Hui Zhu, Xing Liu, Han-Ying Peng, Jin-Quan Chen e Zhi-Bing Dong. "Chemoselective C-S/S-S Formation between Diaryl Disulfides and Tetraalkylthiuram Disulfides". European Journal of Organic Chemistry 2019, n.º 47 (27 de novembro de 2019): 7629–34. http://dx.doi.org/10.1002/ejoc.201901401.
Texto completo da fonteMarkó, István E., J. Mike Southern e M. Lakshmi Kantam. "Stoichiometric C-C Bond Formation Using Triorganothallium Reagents". Synlett 1991, n.º 04 (1991): 235–37. http://dx.doi.org/10.1055/s-1991-20690.
Texto completo da fonteWang, Haibo, Lu Wang, Jinsai Shang, Xing Li, Haoyuan Wang, Jie Gui e Aiwen Lei. "Fe-catalysed oxidative C–H functionalization/C–S bond formation". Chem. Commun. 48, n.º 1 (2012): 76–78. http://dx.doi.org/10.1039/c1cc16184a.
Texto completo da fonteSharma, Upendra, Ritika Sharma, Rakesh Kumar, Inder Kumar e Bikram Singh. "Selective C–Si Bond Formation through C–H Functionalization". Synthesis 47, n.º 16 (9 de julho de 2015): 2347–66. http://dx.doi.org/10.1055/s-0034-1380435.
Texto completo da fonteZhang, Honghua, Huihong Wang, Yi Jiang, Fei Cao, Weiwei Gao, Longqing Zhu, Yuhang Yang et al. "Recent Advances in Iodine‐Promoted C−S/N−S Bonds Formation". Chemistry – A European Journal 26, n.º 72 (5 de outubro de 2020): 17289–317. http://dx.doi.org/10.1002/chem.202001414.
Texto completo da fonteSun, Fengli, Xuemin Liu, Xinzhi Chen, Chao Qian e Xin Ge. "Progress in the Formation of C-S Bond". Chinese Journal of Organic Chemistry 37, n.º 9 (2017): 2211. http://dx.doi.org/10.6023/cjoc201703038.
Texto completo da fonteJean, Mickaël, Jacques Renault, Pierre van de Weghe e Naoki Asao. "Gold-catalyzed C–S bond formation from thiols". Tetrahedron Letters 51, n.º 2 (janeiro de 2010): 378–81. http://dx.doi.org/10.1016/j.tetlet.2009.11.025.
Texto completo da fonteChoudhuri, Khokan, Milan Pramanik e Prasenjit Mal. "Noncovalent Interactions in C–S Bond Formation Reactions". Journal of Organic Chemistry 85, n.º 19 (25 de agosto de 2020): 11997–2011. http://dx.doi.org/10.1021/acs.joc.0c01534.
Texto completo da fonteAitken, R. Alan, Clémence Hauduc, M. Selim Hossain, Emily McHale, Adrian L. Schwan, Alexandra M. Z. Slawin e Colin A. Stewart. "Unexpected Pyrolytic Behaviour of Substituted Benzo[c]thiopyran and Thieno[2,3-c]thiopyran S,S-dioxides". Australian Journal of Chemistry 67, n.º 9 (2014): 1288. http://dx.doi.org/10.1071/ch14155.
Texto completo da fonteShi, Z., S. Yang, B. Li e X. Wan. "C-H Functionalization via C-H Activation and C-C Bond Formation with Arylsilanes". Synfacts 2007, n.º 7 (julho de 2007): 0751. http://dx.doi.org/10.1055/s-2007-968643.
Texto completo da fonteSong, Chunlan, Kun Liu, Xin Dong, Chien-Wei Chiang e Aiwen Lei. "Recent Advances in Electrochemical Oxidative Cross-Coupling for the Construction of C–S Bonds". Synlett 30, n.º 10 (15 de abril de 2019): 1149–63. http://dx.doi.org/10.1055/s-0037-1611753.
Texto completo da fonteKaur, Navjeet. "Cobalt-catalyzed C–N, C–O, C–S bond formation: synthesis of heterocycles". Journal of the Iranian Chemical Society 16, n.º 12 (6 de julho de 2019): 2525–53. http://dx.doi.org/10.1007/s13738-019-01731-1.
Texto completo da fonteMejía, Esteban, e Ahmad A. Almasalma. "Recent Advances on Copper-Catalyzed C–C Bond Formation via C–H Functionalization". Synthesis 52, n.º 18 (19 de maio de 2020): 2613–22. http://dx.doi.org/10.1055/s-0040-1707815.
Texto completo da fonteBhunia, Subhajit, Govind Goroba Pawar, S. Vijay Kumar, Yongwen Jiang e Dawei Ma. "Selected Copper-Based Reactions for C−N, C−O, C−S, and C−C Bond Formation". Angewandte Chemie International Edition 56, n.º 51 (15 de novembro de 2017): 16136–79. http://dx.doi.org/10.1002/anie.201701690.
Texto completo da fonteMitrofanov, Alexander Yu, Arina V. Murashkina, Iris Martín-García, Francisco Alonso e Irina P. Beletskaya. "Formation of C–C, C–S and C–N bonds catalysed by supported copper nanoparticles". Catalysis Science & Technology 7, n.º 19 (2017): 4401–12. http://dx.doi.org/10.1039/c7cy01343d.
Texto completo da fonteZhao, Binlin, Torben Rogge, Lutz Ackermann e Zhuangzhi Shi. "Metal-catalysed C–Het (F, O, S, N) and C–C bond arylation". Chemical Society Reviews 50, n.º 16 (2021): 8903–53. http://dx.doi.org/10.1039/c9cs00571d.
Texto completo da fonteWang, G. W., T. T. Yuan e D. D. Li. "Palladium-Catalyzed One-Pot C-C and C-N Bond Formation by Dual C-H Activation". Synfacts 2011, n.º 07 (17 de junho de 2011): 0808. http://dx.doi.org/10.1055/s-0030-1260671.
Texto completo da fonteBroniowska, Katarzyna A., Agnes Keszler, Swati Basu, Daniel B. Kim-Shapiro e Neil Hogg. "Cytochrome c-mediated formation of S-nitrosothiol in cells". Biochemical Journal 442, n.º 1 (27 de janeiro de 2012): 191–97. http://dx.doi.org/10.1042/bj20111294.
Texto completo da fonteJung, K., K. Yoo e C. Yoon. "Highly Efficient Pd-Catalyzed Oxidative sp2-sp2 C-C Bond Formation". Synfacts 2007, n.º 3 (março de 2007): 0301. http://dx.doi.org/10.1055/s-2007-968179.
Texto completo da fonteBasak, Amit, Sayantan Mondal, Tapobrata Mitra, Raja Mukherjee e Partha Addy. "Garratt–Braverman Cyclization, a Powerful Tool for C–C Bond Formation". Synlett 23, n.º 18 (19 de outubro de 2012): 2582–602. http://dx.doi.org/10.1055/s-0032-1317321.
Texto completo da fonteYoshikai, Naohiko. "Recent Advances in Enantioselective C–C Bond Formation via Organocobalt Species". Synthesis 51, n.º 01 (3 de dezembro de 2018): 135–45. http://dx.doi.org/10.1055/s-0037-1610397.
Texto completo da fonteWang, Congyang. "Manganese-Mediated C-C Bond Formation via C-H Activation: From Stoichiometry to Catalysis". Synlett 24, n.º 13 (11 de julho de 2013): 1606–13. http://dx.doi.org/10.1055/s-0033-1339299.
Texto completo da fonteModha, Sachin G., Vaibhav P. Mehta e Erik V. Van der Eycken. "Transition metal-catalyzed C–C bond formation via C–S bond cleavage: an overview". Chemical Society Reviews 42, n.º 12 (2013): 5042. http://dx.doi.org/10.1039/c3cs60041f.
Texto completo da fonteWang, Haibo, Lu Wang, Jinsai Shang, Xing Li, Haoyuan Wang, Jie Gui e Aiwen Lei. "ChemInform Abstract: Fe-Catalyzed Oxidative C-H Functionalization/C-S Bond Formation." ChemInform 43, n.º 16 (22 de março de 2012): no. http://dx.doi.org/10.1002/chin.201216130.
Texto completo da fonteNgo, Thi-Thuy-Duong, Thi-Huong Nguyen, Chloée Bournaud, Régis Guillot, Martial Toffano e Giang Vo-Thanh. "Phosphine-Thiourea-Organocatalyzed Asymmetric C−N and C−S Bond Formation Reactions". Asian Journal of Organic Chemistry 5, n.º 7 (30 de maio de 2016): 895–99. http://dx.doi.org/10.1002/ajoc.201600212.
Texto completo da fonteBorpatra, Paran J., Bhaskar Deka, Mohit L. Deb e Pranjal K. Baruah. "Recent advances in intramolecular C–O/C–N/C–S bond formation via C–H functionalization". Organic Chemistry Frontiers 6, n.º 20 (2019): 3445–89. http://dx.doi.org/10.1039/c9qo00863b.
Texto completo da fonteYeung, Ying-Yeung, e Jonathan Wong. "Recent Advances in C–Br Bond Formation". Synlett 32, n.º 13 (16 de abril de 2021): 1354–64. http://dx.doi.org/10.1055/s-0037-1610772.
Texto completo da fonteSundaravelu, Nallappan, Subramani Sangeetha e Govindasamy Sekar. "Metal-catalyzed C–S bond formation using sulfur surrogates". Organic & Biomolecular Chemistry 19, n.º 7 (2021): 1459–82. http://dx.doi.org/10.1039/d0ob02320e.
Texto completo da fontePrabhu, Achutha, Jorge S. Dolado, Eddie A. B. Koenders, Rafael Zarzuela, María J. Mosquera, Ines Garcia-Lodeiro e María Teresa Blanco-Varela. "A patchy particle model for C-S-H formation". Cement and Concrete Research 152 (fevereiro de 2022): 106658. http://dx.doi.org/10.1016/j.cemconres.2021.106658.
Texto completo da fonteHuang, Zhiliang, Dongchao Zhang, Xiaotian Qi, Zhiyuan Yan, Mengfan Wang, Haiming Yan e Aiwen Lei. "Radical–Radical Cross-Coupling for C–S Bond Formation". Organic Letters 18, n.º 10 (6 de maio de 2016): 2351–54. http://dx.doi.org/10.1021/acs.orglett.6b00764.
Texto completo da fonteSuzuki, Kazutaka, Tadahiro Nishikawa e Suketoshi Ito. "Formation and carbonation of C-S-H in water". Cement and Concrete Research 15, n.º 2 (março de 1985): 213–24. http://dx.doi.org/10.1016/0008-8846(85)90032-8.
Texto completo da fonteBroniowska, Katarzyna A., Agnes Keszler, Swati Basu, Daniel B. Kim-Shapiro e Neil Hogg. "Cytochrome C-Mediated Formation of S-Nitrosothiol in Cells". Free Radical Biology and Medicine 51 (novembro de 2011): S156. http://dx.doi.org/10.1016/j.freeradbiomed.2011.10.208.
Texto completo da fonteLi, Jianxiao, Shaorong Yang, Wanqing Wu e Huanfeng Jiang. "Recent developments in palladium-catalyzed C–S bond formation". Organic Chemistry Frontiers 7, n.º 11 (2020): 1395–417. http://dx.doi.org/10.1039/d0qo00377h.
Texto completo da fonteBahekar, Sushilkumar S., Aniket P. Sarkate, Vijay M. Wadhai, Pravin S. Wakte e Devanand B. Shinde. "CuI catalyzed C S bond formation by using nitroarenes". Catalysis Communications 41 (novembro de 2013): 123–25. http://dx.doi.org/10.1016/j.catcom.2013.07.019.
Texto completo da fonteManzano, H., A. Ayuela e J. S. Dolado. "On the formation of cementitious C–S–H nanoparticles". Journal of Computer-Aided Materials Design 14, n.º 1 (23 de janeiro de 2007): 45–51. http://dx.doi.org/10.1007/s10820-006-9030-0.
Texto completo da fonteXu, Yulong, Xiaonan Shi e Lipeng Wu. "tBuOK-triggered bond formation reactions". RSC Advances 9, n.º 41 (2019): 24025–29. http://dx.doi.org/10.1039/c9ra04242c.
Texto completo da fontePeng, Kang, Ming-Yuan Gao, Yu-Yan Yi, Jia Guo e Zhi-Bing Dong. "Copper/Nickel-Catalyzed Selective C-S/S-S Bond Formation Starting from O -Alkyl Phenylcarbamothioates". European Journal of Organic Chemistry 2020, n.º 11 (11 de março de 2020): 1665–72. http://dx.doi.org/10.1002/ejoc.201901884.
Texto completo da fonteXu, Jian, Fan Zhang, Shifan Zhang, Li Zhang, Xiaoxia Yu, Jianxiang Yan e Qiuling Song. "Radical Promoted C(sp2)–S Formation and C(sp3)–S Bond Cleavage: Access to 2-Substituted Thiochromones". Organic Letters 21, n.º 4 (28 de janeiro de 2019): 1112–15. http://dx.doi.org/10.1021/acs.orglett.9b00023.
Texto completo da fonteZhang, Ning, Lingling Miao, Yu Yang, Guohang Duan, Linlin Shi, Xin‐Qi Hao, Mao‐Ping Song, Yan Xu e Xinju Zhu. "Assembly of Highly Functionalized Allylic Sulfones via a Stereoselective Pd‐Catalyzed Sequential C−C/C−S Cleavage and C−S Formation Process". ChemistrySelect 6, n.º 19 (17 de maio de 2021): 4736–40. http://dx.doi.org/10.1002/slct.202101190.
Texto completo da fonteGao, Jian, Jie Feng e Ding Du. "Shining Light on C−S Bonds: Recent Advances in C−C Bond Formation Reactions via C−S Bond Cleavage under Photoredox Catalysis". Chemistry – An Asian Journal 15, n.º 22 (14 de outubro de 2020): 3637–59. http://dx.doi.org/10.1002/asia.202000905.
Texto completo da fonteNúñez, Oswaldo, José Rodríguez e Larry Angulo. "Kinetic study of the formation and rupture of stable tetrahedral intermediates. CO, CN and CS bond formation". Journal of Physical Organic Chemistry 7, n.º 2 (fevereiro de 1994): 80–89. http://dx.doi.org/10.1002/poc.610070205.
Texto completo da fonteAmekura, H., K. Narumi, A. Chiba, Y. Hirano, K. Yamada, S. Yamamoto, N. Ishikawa, N. Okubo, M. Toulemonde e Y. Saitoh. "Mechanism of ion track formation in silicon by much lower energy deposition than the formation threshold". Physica Scripta 98, n.º 4 (6 de março de 2023): 045701. http://dx.doi.org/10.1088/1402-4896/acbbf5.
Texto completo da fonteHesse, Stéphanie, e Gilbert Kirsch. "Palladium-Catalyzed C-C Bond Formation from β-Chloroacroleins in Aqueous Media". Synthesis 2001, n.º 05 (2001): 0755–58. http://dx.doi.org/10.1055/s-2001-12775.
Texto completo da fonteMacabeo, Allan. "Synthetic Uses of Chlorotitanium(IV) Triisopropoxide in C-C(N) Bond Formation". Synlett 2008, n.º 20 (24 de novembro de 2008): 3247–48. http://dx.doi.org/10.1055/s-0028-1083139.
Texto completo da fonteSieber, Joshua D., e Toolika Agrawal. "Recent Developments in C–C Bond Formation Using Catalytic Reductive Coupling Strategies". Synthesis 52, n.º 18 (25 de maio de 2020): 2623–38. http://dx.doi.org/10.1055/s-0040-1707128.
Texto completo da fonteHaag, Rainer, Dietmar Kuck, Xiao-Yong Fu, James M. Cook e Armin de Meijere. "Facile Formation of Dihydroacepentalenediide fromcentro-Substituted Tribenzotriquinacenes with C-C Bond Cleavage". Synlett 1994, n.º 05 (1994): 340–42. http://dx.doi.org/10.1055/s-1994-22846.
Texto completo da fonteKobayashi, S., U. Schneider e H. Dao. "Indium(I)-Catalyzed C-C Bond Formation between Allyl Boronates and Acetals". Synfacts 2010, n.º 09 (23 de agosto de 2010): 1055. http://dx.doi.org/10.1055/s-0030-1257900.
Texto completo da fonteFlood, Dillon T., Xuejing Zhang, Xiang Fu, Zhenxiang Zhao, Shota Asai, Brittany B. Sanchez, Emily J. Sturgell et al. "RASS‐Enabled S/P−C and S−N Bond Formation for DEL Synthesis". Angewandte Chemie 132, n.º 19 (11 de março de 2020): 7447–53. http://dx.doi.org/10.1002/ange.201915493.
Texto completo da fonte