Artigos de revistas sobre o tema "Formation de liaisons C-N"

Siga este link para ver outros tipos de publicações sobre o tema: Formation de liaisons C-N.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Formation de liaisons C-N".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Raczyńska, Ewa D., Christian Laurence e Michel Berthelot. "Basicité de liaison hydrogène de formamidines substituées sur l'azote imino". Canadian Journal of Chemistry 70, n.º 8 (1 de agosto de 1992): 2203–8. http://dx.doi.org/10.1139/v92-276.

Texto completo da fonte
Resumo:
The basicity of the hydrogen bonds of formamidines 1–19 was measured by means of the formation constant KHB of their complexes with p-fluorophenol and the frequency shift Δν(OH) of methanol hydrogen-bonded to 1–19. The study of the ν(C=N) band shows that hydrogen bonding takes place with the imino nitrogen atom. On the hydrogen-bonding basicity scale, the formamidines appear to be more basic than the corresponding amides and pyridines, and as basic as the imidazoles. The field effect of electron-withdrawing substituents and the steric effect of bulky alkyl groups on the imino nitrogen atom markedly decrease the hydrogen-bonding basicity.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Allemane, H., M. Prados-Ramirez, J. P. Croué e B. Legube. "Recherche et identification des premiers sous-produits d'oxydation de l'isoproturon par le système ozone/peroxyde d'hydrogène". Revue des sciences de l'eau 8, n.º 3 (12 de abril de 2005): 315–31. http://dx.doi.org/10.7202/705226ar.

Texto completo da fonte
Resumo:
Une solution aqueuse tamponnée par des phosphates (pH initial - 8) dopée en isoproturon (N- (isopropyl-4-phényl)-N-N'-diméthylurée) (~ 20 mg 1-1), a été oxydée par le système perozone, combinant l'ozone et le peroxyde d'hydrogène dans un rapport molaire de 0,5 à 0,6 moles de H2O2 par mole d'ozone. Les disparitions du composé parent, du carbone organique total (COT), du carbone total (CT) et de la consommation d'ozone, ont été suivies au cours de l'oxydation. Les premiers sous-produits d'oxydation, ceux susceptibles de conserver une formulation moléculaire proche de celle du composé initial, et par conséquent de posséder encore une activité toxique, ont été isolés et caractérisés par chromatographie gazeuse couplée à la spectrométrie de masse. Il a été trouvé que l'isoproturon requiert un taux d'oxydation molaire de 10 moles d'ozone par mole d'isoproturon introduit, pour obtenir une élimination complète de cet herbicide. En revanche, le COT n'est pratiquement pas minéralisé, même avec de très forts taux d'ozone, ce qui indique la présence dans le milieu de sous-produits rémanents. La plupart des premiers sous-produits d'oxydation détectés conservent le cycle aromatique dans leur structure, et au moins un atome d'azote, et sont présents à des concentrations significatives. Ces composés semblent aussi réactifs que l'isoproturon vis-à-vis de la perozonation puisqu'ils disparaissent lorsqu'on prolonge l'oxydation. De plus, l'identification de ces sous-produits laisse supposer que l'attaque des radicaux hydroxyles générés par le procédé perozone, entraîne la rupture d'une liaison C-N ou d'une liaison C-H, conduisant à la formation de composés oxygénés.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Derdour, Aïcha, e Fernand Texier. "Étude cinétique de l'ouverture thermique de la liaison C—C d'aziridines et d'époxydes dipôles-1,3 potentiels: I. Méthode d'étude expérimentale". Canadian Journal of Chemistry 63, n.º 8 (1 de agosto de 1985): 2245–52. http://dx.doi.org/10.1139/v85-370.

Texto completo da fonte
Resumo:
The thermolysis of the 2-cyanoaziridines (1), 2-alkoxycarbonylaziridines (2), 2-arylaziridines (3), and 2,2-dicyano-3-aryloxiranes (4) leads to a rupture of the carbon –carbon bond yielding an azomethine ylide and the ylide of a carbonyl. The reaction of these ylides of azomethine with methyl acetylene dicarboxylate (MADC) leads to the formation of a 3-pyroline, which is transformed, according to the substituants, to a 2-pyrroline or to pyrrole. The addition of the ylides of carbonyl leads to the formation of dihydrofurans. Through the kinetic treatment of the addition of these heterocyclic compounds (1 to 4) to MADC, it is possible to determine the rate constants for the opening of the C—C bond (k1). In the case of the aziridines 1, the rates have been determined by ir while hplc has been used in the other cases. Relative to the heterocyclic compounds, the order of the experimental rate constants (kex) is always equal to one. In the cases of theN-cyclohexyl-2-cyano-3-alkylaziridines and of the N-cyclohexyl-2-carbomethoxy-3-phenylaziridine, kex varies with the concentration of MADC and this implies that the rate constants for the cycloaddition of the ylide of azomethine and its reclosing to give aziridine are similar. In the other cases, kex is independent of the concentration of MADC and this implies that the heterocyclic compounds are slowly transformed into 1,3-dipoles, followed by a rapid cycloaddition, [Formula: see text]. [Journal translation]
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Top, Siden, e Gérard Jaouen. "Formation de liaison CC par couplage réducteur d'ions carbéniums arène chrome tricarbonyle". Journal of Organometallic Chemistry 336, n.º 1-2 (dezembro de 1987): 143–51. http://dx.doi.org/10.1016/0022-328x(87)87164-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Andersen, Heidi Gade, David Kvaskoff e Curt Wentrup. "Bisiminopropadienes R-N=C=C=C=N-R from Pyridopyrimidines". Australian Journal of Chemistry 65, n.º 6 (2012): 686. http://dx.doi.org/10.1071/ch12039.

Texto completo da fonte
Resumo:
Chlorination of the N,N′-di(2-pyridyl)malonamide 13a affords 2-chloro-8-methyl-4-(2-(4-picolinyl)imino-4H-pyrido[1,2-a]pyrimidine 17a. Flash vacuum thermolysis of 17a causes efficient ring opening to the valence-tautomeric ketenimine 18a/19a, elimination of HCl, and formation of the bis(4-methyl-2-pyridyl)iminopropadiene, R-N=C=C=C=N-R 20a.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Ghorai, Sujit K., Vijaya G. Gopalsamuthiram, Anup M. Jawalekar, Rupesh E. Patre e Sitaram Pal. "Iron catalyzed C N bond formation". Tetrahedron 73, n.º 14 (abril de 2017): 1769–94. http://dx.doi.org/10.1016/j.tet.2017.02.033.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Neumann, Julia J., Mamta Suri e Frank Glorius. "Efficient Synthesis of Pyrazoles: Oxidative CC/NN Bond-Formation Cascade". Angewandte Chemie International Edition 49, n.º 42 (6 de setembro de 2010): 7790–94. http://dx.doi.org/10.1002/anie.201002389.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Eftaiha, Ala'a F., Abdussalam K. Qaroush, Ibrahim K. Okashah, Fatima Alsoubani, Jonas Futter, Carsten Troll, Bernhard Rieger e Khaleel I. Assaf. "CO2 activation through C–N, C–O and C–C bond formation". Physical Chemistry Chemical Physics 22, n.º 3 (2020): 1306–12. http://dx.doi.org/10.1039/c9cp05961j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Li, Wenjuan, Xiaojian Zheng e Zhiping Li. "Iron-Catalyzed CC Bond Cleavage and CN Bond Formation". Advanced Synthesis & Catalysis 355, n.º 1 (4 de janeiro de 2013): 181–90. http://dx.doi.org/10.1002/adsc.201200324.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Guo, Wei, Mingming Zhao, Wen Tan, Lvyin Zheng, Kailiang Tao e Xiaolin Fan. "Developments towards synthesis of N-heterocycles from amidines via C–N/C–C bond formation". Organic Chemistry Frontiers 6, n.º 13 (2019): 2120–41. http://dx.doi.org/10.1039/c9qo00283a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Frey, Johanna, Sabine Choppin, Françoise Colobert e Joanna Wencel-Delord. "Towards Atropoenantiopure N–C Axially Chiral Compounds via Stereoselective C–N Bond Formation". CHIMIA International Journal for Chemistry 74, n.º 11 (25 de novembro de 2020): 883–89. http://dx.doi.org/10.2533/chimia.2020.883.

Texto completo da fonte
Resumo:
N–C axial chirality, although disregarded for decades, is an interesting type of chirality with appealing applications in medicinal chemistry and agrochemistry. However, atroposelective synthesis of optically pure compounds is extremely challenging and only a limited number of synthetic routes have been designed. In particular, asymmetric N-arylation reactions allowing atroposelective N–C bond forming events remain scarce, although great advances have been achieved recently. In this minireview we summarize the synthetic approaches towards synthesis of N–C axially chiral compounds via stereocontrolled N–C bond forming events. Both organo-catalyzed and metal-catalyzed transformations are described, thus illustrating the diversity and specificity of both strategies.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Fletcher, Rodney J., Murat Kizil e John A. Murphy. "Novel radical-induced CN bond formation". Tetrahedron Letters 36, n.º 2 (janeiro de 1995): 323–26. http://dx.doi.org/10.1016/0040-4039(94)02241-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Abellán-López, Antonio, María-Teresa Chicote, Delia Bautista e José Vicente. "From Chelate C,N-Cyclopalladated Oximes to C,N,N′-, C,N,S-, or C,N,C′-Pincer Palladium(II) Complexes by Formation of Oxime Ether Ligands". Organometallics 31, n.º 21 (11 de outubro de 2012): 7434–46. http://dx.doi.org/10.1021/om3007213.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Wu, Xiao-Feng, e Helfried Neumann. "Zinc-Catalyzed Organic Synthesis: CC, CN, CO Bond Formation Reactions". Advanced Synthesis & Catalysis 354, n.º 17 (12 de novembro de 2012): 3141–60. http://dx.doi.org/10.1002/adsc.201200547.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Zhu, Chen, Rui Wang e John R. Falck. "Amide‐Directed Tandem CC/CN Bond Formation through CH Activation". Chemistry – An Asian Journal 7, n.º 7 (11 de abril de 2012): 1502–14. http://dx.doi.org/10.1002/asia.201200035.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Hashmi, A. Stephen K. "N-2-Phenylaziridinyl imines: Fragmentation and C-C-bond formation". Journal für praktische Chemie 341, n.º 6 (agosto de 1999): 600–604. http://dx.doi.org/10.1002/(sici)1521-3897(199908)341:6<600::aid-prac600>3.0.co;2-w.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Marquis, Eric, Jérôme Graton, Michel Berthelot, Aurélien Planchat e Christian Laurence. "Liaison hydrogène des arylamines : compétition des sites π et N". Canadian Journal of Chemistry 82, n.º 9 (1 de setembro de 2004): 1413–22. http://dx.doi.org/10.1139/v04-128.

Texto completo da fonte
Resumo:
An IR study, in the region of OH stretching, of a reference hydrogen-bond donor, 4-fluorophenol, hydrogen bonded to primary, secondary, and tertiary arylamines differently substituted on the ring and on the nitrogen, shows the formation of two kinds of 1:1 complexes in CCl4 solution: an OH···π and an OH···N hydrogen-bonded complex. The IR method gives only access to a global complexation constant Kt. A method is proposed for separating Kt into a Kπ component for hydrogen bonding to the π system and a KN component for hydrogen bonding to the nitrogen atom. This method is validated by comparing the estimated Kπ and KN values to theoretically calculated descriptors of basicity: the nitrogen lone pair orientation towards the aromatic ring, the molecular electrostatic potentials around the nitrogen and the π cloud, and the enthalpy of hydrogen bonding of hydrogen fluoride with the π system of selected arylamines. The main electronic and steric factors governing the competition between π and N sites are analysed. The strongest π and N bases among the arylamines are julolidine and Tröger's base, respectively. Triphenylamine and diphenylamine, which are nitrogen Brønsted bases, become π bases in hydrogen bonding. Moreover, there is no correlation between the pKHB and the pKBH+ scales of basicity of arylamines. The use of the pKBH+ scale is therefore not recommended in hydrogen-bonding studies.Key words: hydrogen bonding, arylamines, pKHB scale, competition of π and N hydrogen-bonded sites.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Li, Ying-Xiu, Ke-Gong Ji, Hai-Xi Wang, Shaukat Ali e Yong-Min Liang. "ChemInform Abstract: Iodine-Induced Regioselective C-C and C-N Bonds Formation of N-Protected Indoles." ChemInform 42, n.º 16 (24 de março de 2011): no. http://dx.doi.org/10.1002/chin.201116105.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Schranck, Johannes, Anis Tlili e Matthias Beller. "More Sustainable Formation of CN and CC Bonds for the Synthesis of N-Heterocycles". Angewandte Chemie International Edition 52, n.º 30 (17 de junho de 2013): 7642–44. http://dx.doi.org/10.1002/anie.201303015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

He, Qianlin, Feng Xie, Chuanjiang Xia, Wanyi Liang, Ziyin Guo, Zhongzhi Zhu, Yibiao Li e Xiuwen Chen. "Copper-Catalyzed Selective 1,2-Difunctionalization of N-Heteroaromatics through Cascade C–N/C═C/C═O Bond Formation". Organic Letters 22, n.º 20 (30 de setembro de 2020): 7976–80. http://dx.doi.org/10.1021/acs.orglett.0c02910.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Jala, Ranjith, e Radha Krishna Palakodety. "Copper-catalyzed oxidative C H bond functionalization of N-allylbenzamide for C N and C C bond formation". Tetrahedron Letters 60, n.º 21 (maio de 2019): 1437–40. http://dx.doi.org/10.1016/j.tetlet.2019.04.041.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Zinser, Caroline M., Katie G. Warren, Fady Nahra, Abdullah Al-Majid, Assem Barakat, Mohammad Shahidul Islam, Steven P. Nolan e Catherine S. J. Cazin. "Palladate Precatalysts for the Formation of C–N and C–C Bonds". Organometallics 38, n.º 14 (2 de julho de 2019): 2812–17. http://dx.doi.org/10.1021/acs.organomet.9b00326.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Majek, Michal, e Axel Jacobi von Wangelin. "Ambient-Light-Mediated Copper-Catalyzed CC and CN Bond Formation". Angewandte Chemie International Edition 52, n.º 23 (6 de maio de 2013): 5919–21. http://dx.doi.org/10.1002/anie.201301843.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Neumann, Julia J., Mamta Suri e Frank Glorius. "ChemInform Abstract: Efficient Synthesis of Pyrazoles: Oxidative C-C/N-N Bond-Formation Cascade." ChemInform 42, n.º 6 (13 de janeiro de 2011): no. http://dx.doi.org/10.1002/chin.201106144.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Zha, Quanwen, Qiulan Xie, Yimin Hu, Jie Han, Lingling Ge e Rong Guo. "Metallosurfactants C n –Cu–C n : vesicle formation and its drug-controlled release properties". Colloid and Polymer Science 294, n.º 5 (12 de fevereiro de 2016): 841–49. http://dx.doi.org/10.1007/s00396-016-3841-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Tiritiris, Ioannis, e Willi Kantlehner. "Crystal structure ofN-[3-(dimethylamino)propyl]-N′,N′,N′′,N′′-tetramethyl-N-(N,N,N′,N′-tetramethylformamidiniumyl)guanidinium bis(tetraphenylborate)". Acta Crystallographica Section E Crystallographic Communications 71, n.º 12 (1 de dezembro de 2015): o1045—o1046. http://dx.doi.org/10.1107/s2056989015023336.

Texto completo da fonte
Resumo:
In the title salt, C15H36N62+·2C24H20B−, the three N—C bond lengths in the central C3N unit of the bisamidinium ion range between 1.388 (3) and 1.506 (3) Å, indicating single- and double-bond character. Furthermore, four C—N bonds have double-bond character. Here, the bond lengths range from 1.319 (3) to 1.333 (3) Å. Delocalization of the positive charges occurs in the N/C/N and C/N/C planes. The dihedral angle between both N/C/N planes is 70.5 (2)°. In the crystal, C—H...π interactions between H atoms of the cation and the benzene rings of both tetraphenylborate ions are present. The benzene rings form aromatic pockets, in which the bisamidinium ion is embedded. This leads to the formation of a two-dimensional supramolecular pattern along theabplane.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Tsarev, Vasily N., Stanislav I. Konkin, Alexei A. Shyryaev, Vadim A. Davankov e Konstantin N. Gavrilov. "Enantioselective Pd-catalyzed C*–C, C*–N, and C*–S bond formation reactions using first P,P,N,N-tetradentate chiral phosphites". Tetrahedron: Asymmetry 16, n.º 10 (maio de 2005): 1737–41. http://dx.doi.org/10.1016/j.tetasy.2005.04.010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Morris, Scott A., Theresa H. Nguyen e Nan Zheng. "Diastereoselective Oxidative CN/CO and CN/CN Bond Formation Tandems Initiated by Visible Light: Synthesis of FusedN-Arylindolines". Advanced Synthesis & Catalysis 357, n.º 10 (6 de julho de 2015): 2311–16. http://dx.doi.org/10.1002/adsc.201500317.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Sana, Michel, Georges Leroy, Mustapha Hilali, Minh Tho Nguyen e L. G. Vanquickenborne. "Heats of formation of isomeric [C, H4, O]+, [C, H3, N]+ and [C, H5, N]+ radical cations". Chemical Physics Letters 190, n.º 6 (março de 1992): 551–56. http://dx.doi.org/10.1016/0009-2614(92)85190-l.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Morris, Scott A., Theresa H. Nguyen e Nan Zheng. "ChemInform Abstract: Diastereoselective Oxidative C-N/C-O and C-N/C-N Bond Formation Tandems Initiated by Visible Light: Synthesis of Fused N-Arylindolines." ChemInform 46, n.º 46 (27 de outubro de 2015): no. http://dx.doi.org/10.1002/chin.201546150.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Tunge, Jon A., Shelli R. Mellegaard-Waetzig e Dinesh Kumar Rayabarapu. "Allylic Amination via Decarboxylative C-N Bond Formation". Synlett, n.º 18 (2005): 2759–62. http://dx.doi.org/10.1055/s-2005-918949.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Yeston, Jake. "A light approach to C-N bond formation". Science 353, n.º 6296 (14 de julho de 2016): 258.9–259. http://dx.doi.org/10.1126/science.353.6296.258-i.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Mirvich, S. S. "Vitamin C inhibition of N-nitroso compound formation". American Journal of Clinical Nutrition 57, n.º 4 (1 de abril de 1993): 598–99. http://dx.doi.org/10.1093/ajcn/57.4.598.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Wang, Pengfei, Wenya Lu, Dattatray Devalankar e Zhenying Ding. "Photochemical Formation and Cleavage of C–N Bond". Organic Letters 17, n.º 1 (18 de dezembro de 2014): 170–72. http://dx.doi.org/10.1021/ol503473c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Marchetti, Louis, Abhishek Kantak, Riley Davis e Brenton DeBoef. "Regioselective Gold-Catalyzed Oxidative C–N Bond Formation". Organic Letters 17, n.º 2 (24 de dezembro de 2014): 358–61. http://dx.doi.org/10.1021/ol5034805.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Kärkäs, Markus D. "Electrochemical strategies for C–H functionalization and C–N bond formation". Chemical Society Reviews 47, n.º 15 (2018): 5786–865. http://dx.doi.org/10.1039/c7cs00619e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Tsang, W. C. Peter, Nan Zheng e Stephen L. Buchwald. "Combined C−H Functionalization/C−N Bond Formation Route to Carbazoles". Journal of the American Chemical Society 127, n.º 42 (outubro de 2005): 14560–61. http://dx.doi.org/10.1021/ja055353i.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Rit, Raja K., Majji Shankar e Akhila K. Sahoo. "C–H imidation: a distinct perspective of C–N bond formation". Organic & Biomolecular Chemistry 15, n.º 6 (2017): 1282–93. http://dx.doi.org/10.1039/c6ob02162j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Möhlmann, Lennart, Moritz Baar, Julian Rieß, Markus Antonietti, Xinchen Wang e Siegfried Blechert. "Carbon Nitride-Catalyzed Photoredox CC Bond Formation with N-Aryltetrahydroisoquinolines". Advanced Synthesis & Catalysis 354, n.º 10 (5 de junho de 2012): 1909–13. http://dx.doi.org/10.1002/adsc.201100894.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Zhang, Qian, e Yan Li. "N-Fluorobenzenesulfonimide: An Efficient Nitrogen Source for C–N Bond Formation". Synthesis 47, n.º 02 (20 de novembro de 2014): 159–74. http://dx.doi.org/10.1055/s-0034-1379396.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Xie, E. Q., Y. F. Jin, Z. G. Wang e D. Y. He. "Formation of C–N compounds by N-implantation into diamond films". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 135, n.º 1-4 (fevereiro de 1998): 224–28. http://dx.doi.org/10.1016/s0168-583x(97)00595-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Dacho, Vladimír, Dária Nitrayová, Michal Šoral, Andrea Machyňáková, Ján Moncoľ e Peter Szolcsányi. "Access to N-Alkylpyrazin-2-ones via C–O to C–N Rearrangement of Pyrazinyl Ethers". SynOpen 03, n.º 04 (outubro de 2019): 108–13. http://dx.doi.org/10.1055/s-0039-1690222.

Texto completo da fonte
Resumo:
The reaction of tosylated 2-alkoxypyrazines with potassium halides led to the unexpected formation of N-alkylated pyrazinones. Such rare example of substitutive C–O → C–N rearrangement on pyrazines was then scrutinised by using various nucleophiles to afford the respective products in moderate to good yields. This method provides a direct access to N-alkylated-1H-pyrazin-2-ones. The formation of the rearranged products is conveniently and reliably determined by characteristic NMR shifts of their heteroaromatic protons.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Sun, Jiyun, Guangchen Li, Guangtao Zhang, Ying Cong, Xuechan An, Daisy Zhang-Negrerie e Yunfei Du. "Cascade Formation of C3-Unsymmetric Spirooxindoles via PhI(OAc)2-Mediated Oxidative C−C/C−N Bond Formation". Advanced Synthesis & Catalysis 360, n.º 13 (16 de maio de 2018): 2476–81. http://dx.doi.org/10.1002/adsc.201800314.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Li, Ying-Xiu, Ke-Gong Ji, Hai-Xi Wang, Shaukat Ali e Yong-Min Liang. "Iodine-Induced Regioselective C−C and C−N Bonds Formation ofN-Protected Indoles". Journal of Organic Chemistry 76, n.º 2 (21 de janeiro de 2011): 744–47. http://dx.doi.org/10.1021/jo1023014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Lennon, Ian C., e Ashok V. Bhatia. "SPECIAL FEATURE SECTION: Transition-Metal-Mediated C-C and C-N Bond Formation". Organic Process Research & Development 12, n.º 3 (16 de maio de 2008): 467. http://dx.doi.org/10.1021/op800082j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Pratap, Ramendra, Damon Parrish, Padmaja Gunda, D. Venkataraman e Mahesh K. Lakshman. "Influence of Biaryl Phosphine Structure on C−N and C−C Bond Formation". Journal of the American Chemical Society 131, n.º 34 (2 de setembro de 2009): 12240–49. http://dx.doi.org/10.1021/ja902679b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Kaur, Navjeet. "Cobalt-catalyzed C–N, C–O, C–S bond formation: synthesis of heterocycles". Journal of the Iranian Chemical Society 16, n.º 12 (6 de julho de 2019): 2525–53. http://dx.doi.org/10.1007/s13738-019-01731-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Feng, Guangshou, Xiaofei Wang e Jian Jin. "Decarboxylative C-C and C-N Bond Formation by Ligand-Accelerated Iron Photocatalysis". European Journal of Organic Chemistry 2019, n.º 39 (11 de outubro de 2019): 6728–32. http://dx.doi.org/10.1002/ejoc.201901381.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Li, Wenjuan, Xiaojian Zheng e Zhiping Li. "ChemInform Abstract: Iron-Catalyzed C-C Bond Cleavage and C-N Bond Formation." ChemInform 44, n.º 23 (16 de maio de 2013): no. http://dx.doi.org/10.1002/chin.201323076.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Siebeneicher, Holger, e Sven Doye. "Dimethyltitanocene Cp2TiMe2: A Useful Reagent for C—C and C—N Bond Formation". Journal für praktische Chemie 342, n.º 1 (janeiro de 2000): 102–6. http://dx.doi.org/10.1002/(sici)1521-3897(200001)342:1<102::aid-prac102>3.0.co;2-n.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia