Siga este link para ver outros tipos de publicações sobre o tema: Fluxonium.

Artigos de revistas sobre o tema "Fluxonium"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Fluxonium".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Rastelli, Gianluca, Mihajlo Vanević e Wolfgang Belzig. "Coherent dynamics in long fluxonium qubits". New Journal of Physics 17, n.º 5 (18 de maio de 2015): 053026. http://dx.doi.org/10.1088/1367-2630/17/5/053026.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Moskalenko, I. N., I. S. Besedin, I. A. Tsitsilin, G. S. Mazhorin, N. N. Abramov, A. Grigor’ev, I. A. Rodionov et al. "Planar Architecture for Studying a Fluxonium Qubit". JETP Letters 110, n.º 8 (outubro de 2019): 574–79. http://dx.doi.org/10.1134/s0021364019200074.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Manucharyan, V. E., J. Koch, L. I. Glazman e M. H. Devoret. "Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets". Science 326, n.º 5949 (1 de outubro de 2009): 113–16. http://dx.doi.org/10.1126/science.1175552.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Moskalenko, I. N., I. S. Besedin, I. A. Simakov e A. V. Ustinov. "Tunable coupling scheme for implementing two-qubit gates on fluxonium qubits". Applied Physics Letters 119, n.º 19 (8 de novembro de 2021): 194001. http://dx.doi.org/10.1063/5.0064800.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Spilla, Samuele, Fabian Hassler, Anna Napoli e Janine Splettstoesser. "Dephasing due to quasiparticle tunneling in fluxonium qubits: a phenomenological approach". New Journal of Physics 17, n.º 6 (16 de junho de 2015): 065012. http://dx.doi.org/10.1088/1367-2630/17/6/065012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Yang, Yuchen, Zhongtao Shen, Xing Zhu, Ziqi Wang, Gengyan Zhang, Jingwei Zhou, Xun Jiang, Chunqing Deng e Shubin Liu. "FPGA-based electronic system for the control and readout of superconducting quantum processors". Review of Scientific Instruments 93, n.º 7 (1 de julho de 2022): 074701. http://dx.doi.org/10.1063/5.0085467.

Texto completo da fonte
Resumo:
Electronic systems for qubit control and measurement serve as a bridge between quantum programming language and quantum information processors. With the rapid development of superconducting quantum circuit technology, synchronization in a large-scale system, low-latency execution, and low noise are required for electronic systems. Here, we present a field-programmable gate array (FPGA)-based electronic system with a distributed synchronous clock and trigger architecture. The system supports synchronous control of qubits with jitters of ∼5 ps. We implement a real-time digital signal processing system in the FPGA, enabling precise timing control, arbitrary waveform generation, in-phase and quadrature demodulation for qubit state discrimination, and the generation of real-time qubit-state-dependent trigger signals for feedback/feedforward control. The hardware and firmware low-latency design reduces the feedback/feedforward latency of the electronic system to 125 ns, significantly less than the decoherence times of the qubit. Finally, we demonstrate the functionalities and low-noise performance of this system using a fluxonium quantum processor.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Gusenkova, Daria, Francesco Valenti, Martin Spiecker, Simon Günzler, Patrick Paluch, Dennis Rieger, Larisa-Milena Pioraş-Ţimbolmaş et al. "Operating in a deep underground facility improves the locking of gradiometric fluxonium qubits at the sweet spots". Applied Physics Letters 120, n.º 5 (31 de janeiro de 2022): 054001. http://dx.doi.org/10.1063/5.0075909.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Groszkowski, Peter, e Jens Koch. "Scqubits: a Python package for superconducting qubits". Quantum 5 (17 de novembro de 2021): 583. http://dx.doi.org/10.22331/q-2021-11-17-583.

Texto completo da fonte
Resumo:
scqubits is an open-source Python package for simulating and analyzing superconducting circuits. It provides convenient routines to obtain energy spectra of common superconducting qubits, such as the transmon, fluxonium, flux, cos(2ϕ) and the 0-π qubit. scqubits also features a number of options for visualizing the computed spectral data, including plots of energy levels as a function of external parameters, display of matrix elements of various operators as well as means to easily plot qubit wavefunctions. Many of these tools are not limited to single qubits, but extend to composite Hilbert spaces consisting of coupled superconducting qubits and harmonic (or weakly anharmonic) modes. The library provides an extensive suite of methods for estimating qubit coherence times due to a variety of commonly considered noise channels. While all functionality of scqubits can be accessed programatically, the package also implements GUI-like widgets that, with a few clicks can help users both create relevant Python objects, as well as explore their properties through various plots. When applicable, the library harnesses the computing power of multiple cores via multiprocessing. scqubits further exposes a direct interface to the Quantum Toolbox in Python (QuTiP) package, allowing the user to efficiently leverage QuTiP's proven capabilities for simulating time evolution.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Raissi, F., e J. E. Nordman. "Josephson fluxonic diode". Applied Physics Letters 65, n.º 14 (3 de outubro de 1994): 1838–40. http://dx.doi.org/10.1063/1.112859.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Milošević, M. V., G. R. Berdiyorov e F. M. Peeters. "Fluxonic cellular automata". Applied Physics Letters 91, n.º 21 (19 de novembro de 2007): 212501. http://dx.doi.org/10.1063/1.2813047.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Dobrovolskiy, Oleksandr V. "Abrikosov fluxonics in washboard nanolandscapes". Physica C: Superconductivity and its Applications 533 (fevereiro de 2017): 80–90. http://dx.doi.org/10.1016/j.physc.2016.07.008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Hammond, Phillip J., Paul D. Beer, Clare Dudman, Ian P. Danks, C. Dennis Hall, John Knychala e Martin C. Grossel. "Fluxonial cryptands containing metallocene units". Journal of Organometallic Chemistry 306, n.º 3 (junho de 1986): 367–74. http://dx.doi.org/10.1016/s0022-328x(00)98998-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Raissi, F. "Josephson Fluxonic Bipolar Junction Transistor". IEEE Transactions on Appiled Superconductivity 14, n.º 1 (março de 2004): 87–93. http://dx.doi.org/10.1109/tasc.2004.824337.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Raissi, F., e A. Erfanian. "Disappearance of Fiske Steps in Josephson Fluxonic Diode and Josephson Fluxonic Bipolar Junction Transistor". IEEE Transactions on Appiled Superconductivity 15, n.º 3 (setembro de 2005): 3831–35. http://dx.doi.org/10.1109/tasc.2005.850535.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Kadin, A. M. "Duality and fluxonics in superconducting devices". Journal of Applied Physics 68, n.º 11 (dezembro de 1990): 5741–49. http://dx.doi.org/10.1063/1.346969.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

ROGALLA, H. "Fluxonics and Superconducting Electronics in Europe". IEICE Transactions on Electronics E91-C, n.º 3 (1 de março de 2008): 272–79. http://dx.doi.org/10.1093/ietele/e91-c.3.272.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Shainline, Jeffrey M. "Fluxonic Processing of Photonic Synapse Events". IEEE Journal of Selected Topics in Quantum Electronics 26, n.º 1 (janeiro de 2020): 1–15. http://dx.doi.org/10.1109/jstqe.2019.2927473.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Raissi, F. "Modeling of the josephson fluxonic diode". IEEE Transactions on Appiled Superconductivity 13, n.º 3 (setembro de 2003): 3817–20. http://dx.doi.org/10.1109/tasc.2003.817638.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Dobrovolskiy, Oleksandr V., e Andrii V. Chumak. "Nonreciprocal magnon fluxonics upon ferromagnet/superconductor hybrids". Journal of Magnetism and Magnetic Materials 543 (fevereiro de 2022): 168633. http://dx.doi.org/10.1016/j.jmmm.2021.168633.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Kunert, Juergen, Oliver Brandel, Sven Linzen, Olaf Wetzstein, Hannes Toepfer, Thomas Ortlepp e Hans-Georg Meyer. "Recent Developments in Superconductor Digital Electronics Technology at FLUXONICS Foundry". IEEE Transactions on Applied Superconductivity 23, n.º 5 (outubro de 2013): 1101707. http://dx.doi.org/10.1109/tasc.2013.2265496.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Raissi, F., e J. E. Nordman. "Comparison of simulation and experiment for a Josephson fluxonic diode". IEEE Transactions on Appiled Superconductivity 5, n.º 2 (junho de 1995): 2943–46. http://dx.doi.org/10.1109/77.403209.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Dobrovolskiy, Oleksandr V., Michael Huth e Valerij A. Shklovskij. "Alternating current-driven microwave loss modulation in a fluxonic metamaterial". Applied Physics Letters 107, n.º 16 (19 de outubro de 2015): 162603. http://dx.doi.org/10.1063/1.4934487.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Fernández-Pacheco, Amalio, Luka Skoric, José María De Teresa, Javier Pablo-Navarro, Michael Huth e Oleksandr V. Dobrovolskiy. "Writing 3D Nanomagnets Using Focused Electron Beams". Materials 13, n.º 17 (26 de agosto de 2020): 3774. http://dx.doi.org/10.3390/ma13173774.

Texto completo da fonte
Resumo:
Focused electron beam induced deposition (FEBID) is a direct-write nanofabrication technique able to pattern three-dimensional magnetic nanostructures at resolutions comparable to the characteristic magnetic length scales. FEBID is thus a powerful tool for 3D nanomagnetism which enables unique fundamental studies involving complex 3D geometries, as well as nano-prototyping and specialized applications compatible with low throughputs. In this focused review, we discuss recent developments of this technique for applications in 3D nanomagnetism, namely the substantial progress on FEBID computational methods, and new routes followed to tune the magnetic properties of ferromagnetic FEBID materials. We also review a selection of recent works involving FEBID 3D nanostructures in areas such as scanning probe microscopy sensing, magnetic frustration phenomena, curvilinear magnetism, magnonics and fluxonics, offering a wide perspective of the important role FEBID is likely to have in the coming years in the study of new phenomena involving 3D magnetic nanostructures.
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Mehrara, Hamed, e Farshid Raissi. "Selective Capacitive Anodization Process for the Fabrication of Josephson Fluxonic Devices". Journal of Superconductivity and Novel Magnetism 34, n.º 4 (24 de fevereiro de 2021): 1141–46. http://dx.doi.org/10.1007/s10948-021-05838-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Fisher, M. A., E. J. Cukauskas e L. H. Allen. "Thin film Y-Ba-Cu-O/Ag composites for fluxonic devices". IEEE Transactions on Appiled Superconductivity 7, n.º 1 (março de 1997): 1–6. http://dx.doi.org/10.1109/77.585880.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Fomin, Vladimir M., e Oleksandr V. Dobrovolskiy. "A Perspective on superconductivity in curved 3D nanoarchitectures". Applied Physics Letters 120, n.º 9 (28 de fevereiro de 2022): 090501. http://dx.doi.org/10.1063/5.0085095.

Texto completo da fonte
Resumo:
In recent years, superconductivity and vortex matter in curved 3D nanoarchitectures have turned into a vibrant research avenue because of the rich physics of the emerging geometry- and topology-induced phenomena and their prospects for applications in (electro)magnetic field sensing and information technology. While this research domain is still in its infancy, numerous theoretical predictions await their experimental examination. In this Perspective, after a brief introduction to the topical area, we outline experimental techniques capable of fabrication of curved 3D nanostructures and review selected own results on the intertwined dynamics of Meissner currents, Abrikosov vortices, and slips of the phase of the superconducting order parameter therein. We share our vision regarding prospect directions and current challenges in this research domain, arguing that curved 3D nanoarchitectures open up a direction in superconductors' research and possess great potential for magnetic field sensing, bolometry, and fluxonic devices.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Fisher, Michael A., Laura H. Allen e Edward J. Cukauskas. "YBa2Cu3O7/noble metal composite thin films for applications in fluxonic and flux-flow devices". Applied Superconductivity 3, n.º 11-12 (novembro de 1995): 607–14. http://dx.doi.org/10.1016/0964-1807(96)00003-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Dobrovolskiy, O. V., M. Huth e V. A. Shklovskij. "Fluxonic Properties of Vortices in a Washboard Pinning Potential Fabricated by Focused Particle Beam Techniques". Acta Physica Polonica A 121, n.º 1 (janeiro de 2012): 82–84. http://dx.doi.org/10.12693/aphyspola.121.82.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Vafadarali, Hadi, Farshid Raissi e Alireza Erfanian. "Nonlinear response of Josephson fluxonic diode to radiation based on geometry and incident radiation point". Chinese Journal of Physics 56, n.º 1 (fevereiro de 2018): 125–30. http://dx.doi.org/10.1016/j.cjph.2017.12.010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Mehrara, Hamed, Farshid Raissi e Alireza Erfanian. "Josephson Fluxonic Diode as a Pixel with Radiation Pumping of Fluxons in Gigahertz Imaging Systems". Journal of Superconductivity and Novel Magnetism 32, n.º 6 (10 de novembro de 2018): 1645–52. http://dx.doi.org/10.1007/s10948-018-4897-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Mehrara, Hamed, Farshid Raissi, Alireza Erfanian, S. Hossein Mohseni Armaki e Soheil Abdollahi. "Dynamic Microwave Impedance of Dc-Biased Josephson Fluxonic Diode in the Presence of Magnetic Field and RF Drive". IEEE Transactions on Applied Superconductivity 28, n.º 5 (agosto de 2018): 1–8. http://dx.doi.org/10.1109/tasc.2018.2807759.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Mehrara, Hamed, Farshid Raissi e Alireza Erfanian. "Vortex–Antivortex Pair Interaction With Microwave Standing Waves: A Chaos Analysis of Josephson Fluxonic Diode for Microwave Applications". IEEE Transactions on Applied Superconductivity 29, n.º 7 (outubro de 2019): 1–7. http://dx.doi.org/10.1109/tasc.2019.2899550.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Raissi, F. "Simulation Results on Submillimeter Wave Detection by Josephson Fluxonic Diode and a Method to Address Its Focal Plane Array". IEEE Transactions on Applied Superconductivity 16, n.º 1 (março de 2006): 38–42. http://dx.doi.org/10.1109/tasc.2005.863520.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Aichner, Bernd, Benedikt Müller, Max Karrer, Vyacheslav R. Misko, Fabienne Limberger, Kristijan L. Mletschnig, Meirzhan Dosmailov et al. "Ultradense Tailored Vortex Pinning Arrays in Superconducting YBa2Cu3O7−δ Thin Films Created by Focused He Ion Beam Irradiation for Fluxonics Applications". ACS Applied Nano Materials 2, n.º 8 (10 de julho de 2019): 5108–15. http://dx.doi.org/10.1021/acsanm.9b01006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Di Paolo, Agustin, Thomas E. Baker, Alexandre Foley, David Sénéchal e Alexandre Blais. "Efficient modeling of superconducting quantum circuits with tensor networks". npj Quantum Information 7, n.º 1 (27 de janeiro de 2021). http://dx.doi.org/10.1038/s41534-020-00352-4.

Texto completo da fonte
Resumo:
AbstractWe use a tensor network method to compute the low-energy excitations of a large-scale fluxonium qubit up to a desired accuracy. We employ this numerical technique to estimate the pure-dephasing coherence time of the fluxonium qubit due to charge noise and coherent quantum phase slips from first principles, finding an agreement with previously obtained experimental results. By developing an accurate single-mode theory that captures the details of the fluxonium device, we benchmark the results obtained with the tensor network for circuits spanning a Hilbert space as large as 15180. Our algorithm is directly applicable to the wide variety of circuit-QED systems and may be a useful tool for scaling up superconducting quantum technologies.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Moskalenko, Ilya N., Ilya A. Simakov, Nikolay N. Abramov, Alexander A. Grigorev, Dmitry O. Moskalev, Anastasiya A. Pishchimova, Nikita S. Smirnov, Evgeniy V. Zikiy, Ilya A. Rodionov e Ilya S. Besedin. "High fidelity two-qubit gates on fluxoniums using a tunable coupler". npj Quantum Information 8, n.º 1 (8 de novembro de 2022). http://dx.doi.org/10.1038/s41534-022-00644-x.

Texto completo da fonte
Resumo:
AbstractSuperconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale superconductor-based quantum computing due to their better coherence and larger anharmonicity. A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture with high-fidelity single-qubit and two-qubit gates, single-shot readout, and state initialization. Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element. We experimentally demonstrate fSim-type and controlled-Z-gates with 99.55 and 99.23% fidelities, respectively. The residual ZZ interaction is suppressed down to the few kHz levels. Using a galvanically coupled flux control line, we implement high-fidelity single-qubit gates and ground state initialization with a single arbitrary waveform generator channel per qubit.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Cheng, Jia Ming, Yongchang Zhang, Xiang-Fa Zhou e Zheng-Wei Zhou. "Enhancing quantum coherence of a fluxonium qubit by employing flux modulation with tunable-complex-amplitude". New Journal of Physics, 19 de dezembro de 2022. http://dx.doi.org/10.1088/1367-2630/acacbd.

Texto completo da fonte
Resumo:
Abstract We propose to protect fluxonium qubits that are away from half flux quantum against environmental noises, especially 1/f flux noise, by adopting a modulated flux with tunable-complex-amplitude. Using open-system Floquet theory, we derive a Lindblad equation and extract decoherent rates for pure-dephasing, excitation and relaxation. After examining intrinsic attributes of the flux driven fluxonium qubit, we put forward an analytic manner to locate dynamical sweet spots for fast and weak driving. Dynamical sweet curves are found in the parameter plane of relative amplitude factor and relative phase. Around dynamical sweet curves or between two dynamical sweet curves, there exist continuous regions with long coherent times that exceed 100 μs. Taking advantage of the two noise insensitive channels: relative amplitude factor and relative phase, a flux driven fluxonium qubit can become immune to flux noises from both the dc and ac flux amplitudes. And the optimal driving amplitudes are no longer isolated at a certain driving frequency, but become continuous. This is in sharp contrast to the usual schemes based on flux modulation with real-amplitude. As a result, there are plenty of manipulating flexibility in our flux driving scheme with tunable-complex-amplitude, which may be useful in logical operations among flux driven fluxonium qubits or other flux qubits.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Stefanski, Taryn V., e Christian Kraglund Andersen. "Flux-pulse-assisted readout of a fluxonium qubit". Physical Review Applied 22, n.º 1 (30 de julho de 2024). http://dx.doi.org/10.1103/physrevapplied.22.014079.

Texto completo da fonte
Resumo:
Much attention has focused on the transmon architecture for large-scale superconducting quantum devices; however, the fluxonium qubit has emerged as a possible successor. With a shunting inductor in parallel to a Josephson junction, the fluxonium offers larger anharmonicity and stronger protection against dielectric loss, leading to higher coherence times as compared to conventional transmon qubits. The interplay between the inductive and Josephson energy potentials of the fluxonium qubit leads to a rich dispersive-shift landscape when tuning the external flux. Here, we propose to exploit the features in the dispersive shift to improve qubit readout. Specifically, we report on theoretical simulations showing improved readout times and error rates by performing the readout at a flux-bias point with large dispersive shift. We expand the scheme to include different error channels and show that with an integration time of 155 ns, flux-pulse-assisted readout offers about a 5-times improvement in the signal-to-noise ratio. Moreover, we show that the performance improvement persists in the presence of finite measurement efficiency combined with quasistatic flux noise and also when considering the increased Purcell rate at the flux-pulse-assisted readout point. We suggest a set of reasonable energy parameters for the fluxonium architecture that will allow for the implementation of our proposed flux-pulse-assisted readout scheme. Published by the American Physical Society 2024
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Nguyen, Long B., Yen-Hsiang Lin, Aaron Somoroff, Raymond Mencia, Nicholas Grabon e Vladimir E. Manucharyan. "High-Coherence Fluxonium Qubit". Physical Review X 9, n.º 4 (25 de novembro de 2019). http://dx.doi.org/10.1103/physrevx.9.041041.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Hazard, T. M., A. Gyenis, A. Di Paolo, A. T. Asfaw, S. A. Lyon, A. Blais e A. A. Houck. "Nanowire Superinductance Fluxonium Qubit". Physical Review Letters 122, n.º 1 (10 de janeiro de 2019). http://dx.doi.org/10.1103/physrevlett.122.010504.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Stephens, Marric. "Fluxonium Qubits Under Control". Physics 17 (2 de maio de 2024). http://dx.doi.org/10.1103/physics.17.s55.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Pita-Vidal, Marta, Arno Bargerbos, Chung-Kai Yang, David J. van Woerkom, Wolfgang Pfaff, Nadia Haider, Peter Krogstrup, Leo P. Kouwenhoven, Gijs de Lange e Angela Kou. "Gate-Tunable Field-Compatible Fluxonium". Physical Review Applied 14, n.º 6 (14 de dezembro de 2020). http://dx.doi.org/10.1103/physrevapplied.14.064038.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Rieger, D., S. Günzler, M. Spiecker, P. Paluch, P. Winkel, L. Hahn, J. K. Hohmann, A. Bacher, W. Wernsdorfer e I. M. Pop. "Granular aluminium nanojunction fluxonium qubit". Nature Materials, 8 de dezembro de 2022. http://dx.doi.org/10.1038/s41563-022-01417-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Dogan, Ebru, Dario Rosenstock, Loïck Le Guevel, Haonan Xiong, Raymond A. Mencia, Aaron Somoroff, Konstantin N. Nesterov, Maxim G. Vavilov, Vladimir E. Manucharyan e Chen Wang. "Two-Fluxonium Cross-Resonance Gate". Physical Review Applied 20, n.º 2 (4 de agosto de 2023). http://dx.doi.org/10.1103/physrevapplied.20.024011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Mizel, Ari, e Yariv Yanay. "Right-sizing fluxonium against charge noise". Physical Review B 102, n.º 1 (27 de julho de 2020). http://dx.doi.org/10.1103/physrevb.102.014512.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Catelani, Gianluigi. "Fluxonium Steps up to the Plate". Physics 12 (25 de novembro de 2019). http://dx.doi.org/10.1103/physics.12.131.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Viola, Giovanni, e Gianluigi Catelani. "Collective modes in the fluxonium qubit". Physical Review B 92, n.º 22 (21 de dezembro de 2015). http://dx.doi.org/10.1103/physrevb.92.224511.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Wright, Katherine. "Long(er) Live the Fluxonium Qubit". Physics 16 (29 de junho de 2023). http://dx.doi.org/10.1103/physics.16.s92.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Sorokanich, Stephen, Max Hays e Neill C. Warrington. "Exact and approximate fluxonium array modes". Physical Review B 110, n.º 12 (4 de setembro de 2024). http://dx.doi.org/10.1103/physrevb.110.125404.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Chen, Yinqi, Konstantin N. Nesterov, Vladimir E. Manucharyan e Maxim G. Vavilov. "Fast Flux Entangling Gate for Fluxonium Circuits". Physical Review Applied 18, n.º 3 (12 de setembro de 2022). http://dx.doi.org/10.1103/physrevapplied.18.034027.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia