Artigos de revistas sobre o tema "Fluorescent nanoprobes"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Fluorescent nanoprobes".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Yuan, Huanxiang, Yutong Li, Jiaqi Lv, Yunhe An, Di Guan, Jia Liu, Chenxiao Tu, Xiaoyu Wang e Huijuan Zhou. "Recent Advances in Fluorescent Nanoprobes for Food Safety Detection". Molecules 28, n.º 14 (24 de julho de 2023): 5604. http://dx.doi.org/10.3390/molecules28145604.
Texto completo da fonteZha, Yiqian, Xinyuan Cui, Yanlei Liu, Shanshan Fan, Yi Lu, Shengsheng Cui e Daxiang Cui. "Two-Photon Nanoprobe for NIR-II Imaging of Tumour and Biosafety Evaluation". Journal of Biomedical Nanotechnology 18, n.º 3 (1 de março de 2022): 807–17. http://dx.doi.org/10.1166/jbn.2022.3275.
Texto completo da fonteWang, Xiao-Lin, Xiao Han, Xiao-Ying Tang, Xiao-Jun Chen e Han-Jun Li. "A Review of Off–On Fluorescent Nanoprobes: Mechanisms, Properties, and Applications". Journal of Biomedical Nanotechnology 17, n.º 7 (1 de julho de 2021): 1249–72. http://dx.doi.org/10.1166/jbn.2021.3117.
Texto completo da fonteBoukari, Hacène, Candida Silva, Ralph Nossal e Ferenc Horkay. "Nanoprobe Diffusion in Poly(Vinyl-alcohol) Gels and Solutions: Effects of pH and Dehydration". MRS Proceedings 1622 (2014): 135–45. http://dx.doi.org/10.1557/opl.2014.74.
Texto completo da fonteDai, Li, Wenjun Wang, Jie Yan e Yong Liu. "Novel Synthesis of Fluorescein Isothiocyanate-Based Fluorescent Nanoprobes in Imaging Lung Inflammation". Journal of Biomedical Nanotechnology 20, n.º 4 (1 de abril de 2024): 615–27. http://dx.doi.org/10.1166/jbn.2024.3795.
Texto completo da fonteChen, Jingyao, Dan Li, Chenqi Zhou, Yuqian Zhu, Chenyu Lin, Liting Guo, Wenjun Le, Zhengrong Gu e Bingdi Chen. "Principle Superiority and Clinical Extensibility of 2D and 3D Charged Nanoprobe Detection Platform Based on Electrophysiological Characteristics of Circulating Tumor Cells". Cells 12, n.º 2 (13 de janeiro de 2023): 305. http://dx.doi.org/10.3390/cells12020305.
Texto completo da fonteLee, Wang Sik, Soohyun Lee, Taejoon Kang, Choong-Min Ryu e Jinyoung Jeong. "Detection of Ampicillin-Resistant E. coli Using Novel Nanoprobe-Combined Fluorescence In Situ Hybridization". Nanomaterials 9, n.º 5 (16 de maio de 2019): 750. http://dx.doi.org/10.3390/nano9050750.
Texto completo da fonteLiu, Jiyin, Xiaochun Xie, Junna Lu, Yi He, Dan Shao e Fangman Chen. "Self-Assembled Ru(II)-Coumarin Complexes for Selective Cell Membrane Imaging". Pharmaceutics 14, n.º 11 (25 de outubro de 2022): 2284. http://dx.doi.org/10.3390/pharmaceutics14112284.
Texto completo da fonteZhu, Koujun, Rongguo Lu, Weifeng Qu, Jiaqi Gu, Hu Xiang, Weimin Zhang e Bin Ni. "Novel Au–Se Nanoprobes for Specific Thrombin Detection in Diagnosis of Lung Cancer". Journal of Biomedical Nanotechnology 18, n.º 4 (1 de abril de 2022): 976–85. http://dx.doi.org/10.1166/jbn.2022.3302.
Texto completo da fonteSong, Lina, Shuai Ren, Yali Yue, Ying Tian e Zhongqiu Wang. "A Gold Nanocage Probe Targeting Survivin for the Diagnosis of Pancreatic Cancer". Pharmaceutics 15, n.º 5 (19 de maio de 2023): 1547. http://dx.doi.org/10.3390/pharmaceutics15051547.
Texto completo da fonteFeng, Zhenzhen, Yanyun Ma, Bingjie Li, Leiliang He, Qing Wang, Jin Huang, Jianbo Liu, Xiaohai Yang e Kemin Wang. "Mitochondria targeted self-assembled ratiometric fluorescent nanoprobes for pH imaging in living cells". Analytical Methods 11, n.º 15 (2019): 2097–104. http://dx.doi.org/10.1039/c9ay00473d.
Texto completo da fonteJarosova, Romana, Sarah K. Woolfolk, Noraida Martinez-Rivera, Mathew W. Jaeschke, Eduardo Rosa-Molinar, Candan Tamerler e Michael A. Johnson. "Spatiotemporal Imaging of Zinc Ions in Zebrafish Live Brain Tissue Enabled by Fluorescent Bionanoprobes". Molecules 28, n.º 5 (28 de fevereiro de 2023): 2260. http://dx.doi.org/10.3390/molecules28052260.
Texto completo da fonteDu, Xinfeng, Niping Li, Qinghan Chen, Zeying Wu, Jingying Zhai e Xiaojiang Xie. "Perspective on fluorescence cell imaging with ionophore-based ion-selective nano-optodes". Biomicrofluidics 16, n.º 3 (maio de 2022): 031301. http://dx.doi.org/10.1063/5.0090599.
Texto completo da fonteChen, Zhe, Zhuoyi Wang, Yihua Yuan, Bo Liu, Jiangbo Yu, Zhiwen Wei e Keming Yun. "A Target-Triggered Emission Enhancement Strategy Based on a Y-Shaped DNA Fluorescent Nanoprobe with Aggregation-Induced Emission Characteristic for microRNA Imaging in Living Cells". Molecules 28, n.º 5 (24 de fevereiro de 2023): 2149. http://dx.doi.org/10.3390/molecules28052149.
Texto completo da fonteSokolov, Pavel, Galina Nifontova, Pavel Samokhvalov, Alexander Karaulov, Alyona Sukhanova e Igor Nabiev. "Nontoxic Fluorescent Nanoprobes for Multiplexed Detection and 3D Imaging of Tumor Markers in Breast Cancer". Pharmaceutics 15, n.º 3 (15 de março de 2023): 946. http://dx.doi.org/10.3390/pharmaceutics15030946.
Texto completo da fonteChen, Ying, Gege Yang, Shanshan Gao, Liangliang Zhang, Mengdi Yu, Chunxia Song e Ying Lu. "Highly rapid and non-enzymatic detection of cholesterol based on carbon nitride quantum dots as fluorescent nanoprobes". RSC Advances 10, n.º 65 (2020): 39596–600. http://dx.doi.org/10.1039/d0ra07495k.
Texto completo da fonteZhang, Mingkai, Yang Gao, Jialiang Wang, Zhanbo Liu, Zaishun Jin, Jianbo Yu, Yukuan Feng e Qiang Lü. "Identification on Mantle Cell Lymphoma Using CD20 and CD5 Coupled Upconversion Fluorescent Nanoprobes". Journal of Nanomaterials 2018 (2018): 1–12. http://dx.doi.org/10.1155/2018/3893761.
Texto completo da fonteShen, Cheng-Long, Guang-Song Zheng, Meng-Yuan Wu, Jian-Yong Wei, Qing Lou, Yang-Li Ye, Zhi-Yi Liu, Jin-Hao Zang, Lin Dong e Chong-Xin Shan. "Chemiluminescent carbon nanodots as sensors for hydrogen peroxide and glucose". Nanophotonics 9, n.º 11 (12 de julho de 2020): 3597–604. http://dx.doi.org/10.1515/nanoph-2020-0233.
Texto completo da fonteZhu, Yanli, Jikai Wang, Yiyang Sun e Qingyun Cai. "A magneto-fluorescence bacteria assay strategy based on dual colour sulfide fluorescent nanoparticles with high near-IR conversion efficiency". Analyst 145, n.º 13 (2020): 4436–41. http://dx.doi.org/10.1039/d0an00816h.
Texto completo da fonteHu, Yufeng, Jie Liu, Junyu Li, Tao Chen e Minghuo Wu. "Dual-functional imprinted magnetic nanoprobes for fluorescence detection of N-nitrosodiphenylamine". Analytical Methods 10, n.º 20 (2018): 2384–89. http://dx.doi.org/10.1039/c8ay00584b.
Texto completo da fonteHuang, Ming, Lijun Wang, Xiaojuan Zhang, Jin Zhou, Lihua Liu, Yuefang Pan, Bin Yu e Zhangsen Yu. "Synthesis and Characterization of Folic Acid Labeled Upconversion Fluorescent Nanoprobes for in vitro Cancer Cells Targeted Imaging". Nano 12, n.º 05 (15 de março de 2017): 1750057. http://dx.doi.org/10.1142/s1793292017500576.
Texto completo da fonteZhang, Ning, Yanmei Si, Zongzhao Sun, Shuai Li, Shuying Li, Yuehe Lin e Hua Wang. "Lab-on-a-drop: biocompatible fluorescent nanoprobes of gold nanoclusters for label-free evaluation of phosphorylation-induced inhibition of acetylcholinesterase activity towards the ultrasensitive detection of pesticide residues". Analyst 139, n.º 18 (2014): 4620–28. http://dx.doi.org/10.1039/c4an00855c.
Texto completo da fonteDiao, Juanjuan, Tingting Wang e Li Li. "Graphene quantum dots as nanoprobes for fluorescent detection of propofol in emulsions". Royal Society Open Science 6, n.º 1 (janeiro de 2019): 181753. http://dx.doi.org/10.1098/rsos.181753.
Texto completo da fonteDunn, Bryce, Marzieh Hanafi, John Hummel, John R. Cressman, Rémi Veneziano e Parag V. Chitnis. "NIR-II Nanoprobes: A Review of Components-Based Approaches to Next-Generation Bioimaging Probes". Bioengineering 10, n.º 8 (11 de agosto de 2023): 954. http://dx.doi.org/10.3390/bioengineering10080954.
Texto completo da fonteSun, Lu, Shuping Xie, Xiuru Ji, Jingming Zhang, Dongmei Wang, Seung Jin Lee, Hyukjin Lee, Huining He e Victor C. Yang. "MMP-2-responsive fluorescent nanoprobes for enhanced selectivity of tumor cell uptake and imaging". Biomaterials Science 6, n.º 10 (2018): 2619–26. http://dx.doi.org/10.1039/c8bm00593a.
Texto completo da fonteJin, Cheng, Ting Fu, Ruowen Wang, Hui Liu, Jianmei Zou, Zilong Zhao, Mao Ye, Xiaobing Zhang e Weihong Tan. "Fluorinated molecular beacons as functional DNA nanomolecules for cellular imaging". Chemical Science 8, n.º 10 (2017): 7082–86. http://dx.doi.org/10.1039/c7sc02819a.
Texto completo da fonteWang, Min, Ke-yan Zheng, Shao-wu Lv, Hai-feng Zou, Hong-sen Liu, Gang-lin Yan, Ai-dong Liu e Xiao-fang Fei. "Preparation and characterization of universal Fe3O4@SiO2/CdTe nanocomposites for rapid and facile detection and separation of membrane proteins". New Journal of Chemistry 42, n.º 7 (2018): 4981–90. http://dx.doi.org/10.1039/c7nj04484d.
Texto completo da fonteZhang, Yupu, Xinfeng Du e Xiaojiang Xie. "Ionophore-Based Potassium Selective Fluorescent Organosilica Nano-Optodes Containing Covalently Attached Solvatochromic Dyes". Chemosensors 10, n.º 1 (7 de janeiro de 2022): 23. http://dx.doi.org/10.3390/chemosensors10010023.
Texto completo da fonteZhu, Huarui, Liang Gao, Xinglu Jiang, Ru Liu, Yueteng Wei, Yaling Wang, Yuliang Zhao, Zhifang Chai e Xueyun Gao. "Positively charged graphene oxide nanoparticle: precisely label the plasma membrane of live cell and sensitively monitor extracellular pH in situ". Chem. Commun. 50, n.º 28 (2014): 3695–98. http://dx.doi.org/10.1039/c3cc49325c.
Texto completo da fonteChen, Yun, Jing Ye, Gang Lv, Weiwei Liu, Hui Jiang, Xiaohui Liu e Xuemei Wang. "Hydrogen Peroxide and Hypochlorite Responsive Fluorescent Nanoprobes for Sensitive Cancer Cell Imaging". Biosensors 12, n.º 2 (11 de fevereiro de 2022): 111. http://dx.doi.org/10.3390/bios12020111.
Texto completo da fonteWu, Hao, Haidong Zhao, Xiaojie Song, Shen Li, Xiaojun Ma e Mingqian Tan. "Self-assembly-induced near-infrared fluorescent nanoprobes for effective tumor molecular imaging". J. Mater. Chem. B 2, n.º 32 (2014): 5302–8. http://dx.doi.org/10.1039/c4tb00761a.
Texto completo da fonteQi, Xiaoli, Hui Hu, Lina Liang, Yuqing Lin, Yudan Liu, Haifeng Sun e Yunxian Piao. "Fluorescence nanoprobes bearing low temperature-derived biochar nanoparticles as efficient quenchers for the detection of single-stranded DNA and 17β-estradiol and their analytical potential". RSC Advances 14, n.º 38 (2024): 28077–85. http://dx.doi.org/10.1039/d4ra03168g.
Texto completo da fonteYanagi, Tamami, Kiichi Kaminaga, Wataru Kada, Osamu Hanaizumi e Ryuji Igarashi. "Optimization of Wide-Field ODMR Measurements Using Fluorescent Nanodiamonds to Improve Temperature Determination Accuracy". Nanomaterials 10, n.º 11 (18 de novembro de 2020): 2282. http://dx.doi.org/10.3390/nano10112282.
Texto completo da fontePinkerton, Nathalie M., Céline Frongia, Valérie Lobjois, Brian K. Wilson, Matthew J. Bruzek, Robert K. Prud'homme, John Anthony, Frédéric Bolze e Stefan Chassaing. "Red-emitting, EtTP-5-based organic nanoprobes for two-photon imaging in 3D multicellular biological models". RSC Advances 6, n.º 70 (2016): 65770–74. http://dx.doi.org/10.1039/c6ra09954h.
Texto completo da fonteKhalid, Asma, e Snjezana Tomljenovic-Hanic. "Emerging Fluorescent Nanoparticles for Non-Invasive Bioimaging". Molecules 29, n.º 23 (26 de novembro de 2024): 5594. http://dx.doi.org/10.3390/molecules29235594.
Texto completo da fonteKarabacak, Soner, Alagappan Palaniappan, Tsang Siu Hon Tony, Teo Hang Tong Edwin, Balázs Gulyás, Parasuraman Padmanabhan e Ümit Hakan Yildiz. "Gadolinium and Polythiophene Functionalized Polyurea Polymer Dots as Fluoro-Magnetic Nanoprobes". Nanomaterials 12, n.º 4 (14 de fevereiro de 2022): 642. http://dx.doi.org/10.3390/nano12040642.
Texto completo da fonteCingolani, Matteo, Liviana Mummolo, Francesca Lugli, Mirko Zaffagnini e Damiano Genovese. "Protein aggregation detection with fluorescent macromolecular and nanostructured probes: challenges and opportunities". New Journal of Chemistry 45, n.º 32 (2021): 14259–68. http://dx.doi.org/10.1039/d1nj01606g.
Texto completo da fonteChen, Mian, Xiaoxiao He, Kemin Wang, Dinggeng He, Xiaohai Yang e Hui Shi. "Inorganic fluorescent nanoprobes for cellular and subcellular imaging". TrAC Trends in Analytical Chemistry 58 (junho de 2014): 120–29. http://dx.doi.org/10.1016/j.trac.2014.03.003.
Texto completo da fonteChen, Junyu, Songsong Luo, Dazhuang Xu, Yun Xue, Hongye Huang, Qing Wan, Meiying Liu, Xiaoyong Zhang e Yen Wei. "Fabrication of AIE-active amphiphilic fluorescent polymeric nanoparticles through host–guest interaction". RSC Advances 6, n.º 60 (2016): 54812–19. http://dx.doi.org/10.1039/c6ra08677b.
Texto completo da fonteLong, Shuangshuang, Qinglong Qiao, Fei Deng, Lu Miao, Juyoung Yoon e Zhaochao Xu. "Self-assembling nanoprobes that display two-dimensional fluorescent signals for identification of surfactants and bacteria". Chemical Communications 55, n.º 7 (2019): 969–72. http://dx.doi.org/10.1039/c8cc09544b.
Texto completo da fontePayne, Christine K. "Fluorescent Dendritic Nanoprobes: A New Class of Fluorescent Probes for Biological Applications". Biophysical Journal 104, n.º 7 (abril de 2013): 1394. http://dx.doi.org/10.1016/j.bpj.2013.01.053.
Texto completo da fonteLettieri, Stefania, Marta d’Amora, Adalberto Camisasca, Alberto Diaspro e Silvia Giordani. "Carbon nano-onions as fluorescent on/off modulated nanoprobes for diagnostics". Beilstein Journal of Nanotechnology 8 (7 de setembro de 2017): 1878–88. http://dx.doi.org/10.3762/bjnano.8.188.
Texto completo da fonteKumar, Sushil, Ganga Ram Chaudhary, Savita Chaudhary e Ahmad Umar. "3-Mercaptopropyl Trimethoxysilane @ Gadolinium Oxide Nanoprobes: An Effective Fluorescence-Sensing Platform for Cysteine". Coatings 12, n.º 11 (28 de outubro de 2022): 1636. http://dx.doi.org/10.3390/coatings12111636.
Texto completo da fonteSun, Qiang, Jun Yao, Shuxun Wei, Xinxing Li e Weijun Wang. "The Value of Near-Infrared Multifunctional Nanoprobe Combined with Artificial Intelligence Microsensor Technology in Molecular Diagnosis for Gastric Cancer". Journal of Biomedical Nanotechnology 20, n.º 2 (1 de fevereiro de 2024): 351–58. http://dx.doi.org/10.1166/jbn.2024.3769.
Texto completo da fonteYu, Haijun, Chao Chen, Xiaodan Cao, Yueling Liu, Shengmin Zhou e Ping Wang. "Ratiometric fluorescent pH nanoprobes based on in situ assembling of fluorescence resonance energy transfer between fluorescent proteins". Analytical and Bioanalytical Chemistry 409, n.º 21 (7 de julho de 2017): 5073–80. http://dx.doi.org/10.1007/s00216-017-0453-0.
Texto completo da fonteGao, Yan, Li Han, Jing Jing Liu, Xing Gao e Wen He. "The Research Progress of Fluorescent Probes for Detection of Selenols". Key Engineering Materials 861 (setembro de 2020): 315–19. http://dx.doi.org/10.4028/www.scientific.net/kem.861.315.
Texto completo da fonteLou, Doudou, Lin Fan, Yongxin Ji, Ning Gu e Yu Zhang. "A signal amplifying fluorescent nanoprobe and lateral flow assay for ultrasensitive detection of cardiac biomarker troponin I". Analytical Methods 11, n.º 28 (2019): 3506–13. http://dx.doi.org/10.1039/c9ay01039d.
Texto completo da fonteQiao, Zichun, Zhaoyang Chen, Shuo Zhang, Zepeng Cui, Zhuoran Xu, Weibing Zhang e Junhong Qian. "Naphthalimide-based fluorescent nanoprobes for the detection of saccharides". New Journal of Chemistry 42, n.º 20 (2018): 16428–35. http://dx.doi.org/10.1039/c8nj03053g.
Texto completo da fonteQuek, Chai-Hoon, e Kam W. Leong. "Near-Infrared Fluorescent Nanoprobes for in Vivo Optical Imaging". Nanomaterials 2, n.º 2 (30 de março de 2012): 92–112. http://dx.doi.org/10.3390/nano2020092.
Texto completo da fonteLim, Eun-Kyung, Jaemoon Yang, Colin P. N. Dinney, Jin-Suck Suh, Yong-Min Huh e Seungjoo Haam. "Self-assembled fluorescent magnetic nanoprobes for multimode-biomedical imaging". Biomaterials 31, n.º 35 (dezembro de 2010): 9310–19. http://dx.doi.org/10.1016/j.biomaterials.2010.07.081.
Texto completo da fonte