Artigos de revistas sobre o tema "Fluid-structure interaction – Mathematical models"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Fluid-structure interaction – Mathematical models".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Griffith, Boyce E., e Neelesh A. Patankar. "Immersed Methods for Fluid–Structure Interaction". Annual Review of Fluid Mechanics 52, n.º 1 (5 de janeiro de 2020): 421–48. http://dx.doi.org/10.1146/annurev-fluid-010719-060228.
Texto completo da fonteBenaroya, Haym, e Rene D. Gabbai. "Modelling vortex-induced fluid–structure interaction". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, n.º 1868 (5 de novembro de 2007): 1231–74. http://dx.doi.org/10.1098/rsta.2007.2130.
Texto completo da fonteSurana, K. S., B. Blackwell, M. Powell e J. N. Reddy. "Mathematical models for fluid–solid interaction and their numerical solutions". Journal of Fluids and Structures 50 (outubro de 2014): 184–216. http://dx.doi.org/10.1016/j.jfluidstructs.2014.06.023.
Texto completo da fonteLopes, D., H. Puga, J. C. Teixeira e S. F. Teixeira. "Fluid–Structure Interaction study of carotid blood flow: Comparison between viscosity models". European Journal of Mechanics - B/Fluids 83 (setembro de 2020): 226–34. http://dx.doi.org/10.1016/j.euromechflu.2020.05.010.
Texto completo da fonteMarom, Gil. "Numerical Methods for Fluid–Structure Interaction Models of Aortic Valves". Archives of Computational Methods in Engineering 22, n.º 4 (2 de outubro de 2014): 595–620. http://dx.doi.org/10.1007/s11831-014-9133-9.
Texto completo da fonteTello, Alexis, Ramon Codina e Joan Baiges. "Fluid structure interaction by means of variational multiscale reduced order models". International Journal for Numerical Methods in Engineering 121, n.º 12 (27 de fevereiro de 2020): 2601–25. http://dx.doi.org/10.1002/nme.6321.
Texto completo da fonteLarsson, Jonas. "A new Hamiltonian formulation for fluids and plasmas. Part 2. MHD models". Journal of Plasma Physics 55, n.º 2 (abril de 1996): 261–78. http://dx.doi.org/10.1017/s0022377800018821.
Texto completo da fonteCottet, Georges-Henri, Emmanuel Maitre e Thomas Milcent. "Eulerian formulation and level set models for incompressible fluid-structure interaction". ESAIM: Mathematical Modelling and Numerical Analysis 42, n.º 3 (3 de abril de 2008): 471–92. http://dx.doi.org/10.1051/m2an:2008013.
Texto completo da fonteDesjardins, B., e M. J. Esteban. "On Weak Solutions for Fluid‐Rigid Structure Interaction: Compressible and Incompressible Models". Communications in Partial Differential Equations 25, n.º 7-8 (janeiro de 1999): 263–85. http://dx.doi.org/10.1080/03605300008821553.
Texto completo da fonteColciago, C. M., S. Deparis e A. Quarteroni. "Comparisons between reduced order models and full 3D models for fluid–structure interaction problems in haemodynamics". Journal of Computational and Applied Mathematics 265 (agosto de 2014): 120–38. http://dx.doi.org/10.1016/j.cam.2013.09.049.
Texto completo da fonteLara, Javier L., Inigo J. Losada, Gabriel Barajas, Maria Maza e Benedetto Di Paolo. "RECENT ADVANCES IN 3D MODELLING OF WAVE-STRUCTURE INTERACTION WITH CFD MODELS". Coastal Engineering Proceedings, n.º 36 (30 de dezembro de 2018): 91. http://dx.doi.org/10.9753/icce.v36.waves.91.
Texto completo da fonteTang, Aik Ying, e Norsarahaida Amin. "Some Numerical Approaches to Solve Fluid Structure Interaction Problems in Blood Flow". Abstract and Applied Analysis 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/549189.
Texto completo da fonteBallarin, Francesco, e Gianluigi Rozza. "POD-Galerkin monolithic reduced order models for parametrized fluid-structure interaction problems". International Journal for Numerical Methods in Fluids 82, n.º 12 (21 de junho de 2016): 1010–34. http://dx.doi.org/10.1002/fld.4252.
Texto completo da fonteKamenskiy, Alexey V., Iraklis I. Pipinos, Yuris A. Dzenis, Prateek K. Gupta, Syed A. Jaffar Kazmi e Jason N. MacTaggart. "A mathematical evaluation of hemodynamic parameters after carotid eversion and conventional patch angioplasty". American Journal of Physiology-Heart and Circulatory Physiology 305, n.º 5 (1 de setembro de 2013): H716—H724. http://dx.doi.org/10.1152/ajpheart.00034.2013.
Texto completo da fonteWang, Xiaojing, Guojia Man e Mengjian Zhang. "Research on the leakage of continuous rotary electro-hydraulic servo motor based on fluid structure interaction analysis". Industrial Lubrication and Tribology 70, n.º 3 (9 de abril de 2018): 544–51. http://dx.doi.org/10.1108/ilt-03-2017-0064.
Texto completo da fonteWeinstein, Alan M. "Mathematical models of renal fluid and electrolyte transport: acknowledging our uncertainty". American Journal of Physiology-Renal Physiology 284, n.º 5 (1 de maio de 2003): F871—F884. http://dx.doi.org/10.1152/ajprenal.00330.2002.
Texto completo da fonteChen, Mingqiang, Linsong Cheng, Renyi Cao e Chaohui Lyu. "A Study to Investigate Fluid-Solid Interaction Effects on Fluid Flow in Micro Scales". Energies 11, n.º 9 (22 de agosto de 2018): 2197. http://dx.doi.org/10.3390/en11092197.
Texto completo da fonteColicchio, G., M. Greco, M. Brocchini e O. M. Faltinsen. "Hydroelastic behaviour of a structure exposed to an underwater explosion". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, n.º 2033 (28 de janeiro de 2015): 20140103. http://dx.doi.org/10.1098/rsta.2014.0103.
Texto completo da fonteSadeghi, J., M. Khurshudyan e H. Farahani. "Interacting ghost dark energy models in the higher dimensional cosmology". International Journal of Modern Physics D 25, n.º 14 (dezembro de 2016): 1650108. http://dx.doi.org/10.1142/s021827181650108x.
Texto completo da fonteBouaanani, Najib, Patrick Paultre e Jean Proulx. "Dynamic response of a concrete dam impounding an ice-covered reservoir: Part I. Mathematical modelling". Canadian Journal of Civil Engineering 31, n.º 6 (1 de dezembro de 2004): 956–64. http://dx.doi.org/10.1139/l04-075.
Texto completo da fonteJiang, Qinglei, Lulu Zhai, Leqin Wang e Dazhuan Wu. "Fluid-Structure Interaction Analysis on Turbulent Annular Seals of Centrifugal Pumps during Transient Process". Mathematical Problems in Engineering 2011 (2011): 1–22. http://dx.doi.org/10.1155/2011/929574.
Texto completo da fonteDrobakha, Hr, I. Neklonskyi, A. Kateshchenok, V. Sobyna, D. Taraduda, L. Borysova e I. Lysachenko. "Structural and functional simulation of interaction in the field of aviation safety by using matrices". Archives of Materials Science and Engineering 2, n.º 95 (1 de fevereiro de 2019): 74–84. http://dx.doi.org/10.5604/01.3001.0013.1734.
Texto completo da fonteEllam, L., M. Girolami, G. A. Pavliotis e A. Wilson. "Stochastic modelling of urban structure". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474, n.º 2213 (maio de 2018): 20170700. http://dx.doi.org/10.1098/rspa.2017.0700.
Texto completo da fonteFalahati, M., e M. Behdarvandi Askar. "Seismic Performance of the Pier Considering Structural-Fluid Interaction with ANSYS Software". Journal of Applied Engineering Sciences 7, n.º 2 (1 de dezembro de 2017): 25–30. http://dx.doi.org/10.1515/jaes-2017-0009.
Texto completo da fontePetruk, O. O., O. T. Vavryk, O. S. Tsareva e L. M. Hobyr. "MODEL REPRESENTATIONS OF THE MELTS STRUCTURE DESCRIPTION BY THE MODEL OF HARD SPHERES". PRECARPATHIAN BULLETIN OF THE SHEVCHENKO SCIENTIFIC SOCIETY Number, n.º 1(59) (28 de janeiro de 2021): 72–78. http://dx.doi.org/10.31471/2304-7399-2020-1(59)-72-78.
Texto completo da fonteLaugesen, Jakob L., Olga V. Sosnovtseva, Erik Mosekilde, Niels-Henrik Holstein-Rathlou e Donald J. Marsh. "Coupling-induced complexity in nephron models of renal blood flow regulation". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 298, n.º 4 (abril de 2010): R997—R1006. http://dx.doi.org/10.1152/ajpregu.00714.2009.
Texto completo da fonteZhekov, Svetozar A., A. V. Myasnikov e N. A. Belov. "Radiative colliding winds models: the stagnation point singularity". Symposium - International Astronomical Union 193 (1999): 402. http://dx.doi.org/10.1017/s0074180900205949.
Texto completo da fonteBayly, P. V., e S. K. Dutcher. "Steady dynein forces induce flutter instability and propagating waves in mathematical models of flagella". Journal of The Royal Society Interface 13, n.º 123 (outubro de 2016): 20160523. http://dx.doi.org/10.1098/rsif.2016.0523.
Texto completo da fonteRejniak, Katarzyna A., e Lisa J. McCawley. "Current trends in mathematical modeling of tumor–microenvironment interactions: a survey of tools and applications". Experimental Biology and Medicine 235, n.º 4 (abril de 2010): 411–23. http://dx.doi.org/10.1258/ebm.2009.009230.
Texto completo da fonteSchiffer, Andreas, e Vito L. Tagarielli. "The response of rigid plates to blast in deep water: fluid–structure interaction experiments". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, n.º 2145 (9 de maio de 2012): 2807–28. http://dx.doi.org/10.1098/rspa.2012.0076.
Texto completo da fonteWang, Na, Akbar Maleki, Mohammad Alhuyi Nazari, Iskander Tlili e Mostafa Safdari Shadloo. "Thermal Conductivity Modeling of Nanofluids Contain MgO Particles by Employing Different Approaches". Symmetry 12, n.º 2 (1 de fevereiro de 2020): 206. http://dx.doi.org/10.3390/sym12020206.
Texto completo da fonteLukkarinen, Jani. "Multi-state Condensation in Berlin–Kac Spherical Models". Communications in Mathematical Physics 373, n.º 1 (24 de dezembro de 2019): 389–433. http://dx.doi.org/10.1007/s00220-019-03659-2.
Texto completo da fonteGuerin, Heather Anne L., e Dawn M. Elliott. "The Role of Fiber-Matrix Interactions in a Nonlinear Fiber-Reinforced Strain Energy Model of Tendon". Journal of Biomechanical Engineering 127, n.º 2 (18 de novembro de 2004): 345–50. http://dx.doi.org/10.1115/1.1865212.
Texto completo da fonteDallon, J. C., E. J. Evans e H. Paul Ehrlich. "A mathematical model of collagen lattice contraction". Journal of The Royal Society Interface 11, n.º 99 (6 de outubro de 2014): 20140598. http://dx.doi.org/10.1098/rsif.2014.0598.
Texto completo da fontePiwowarczyk, Marek. "Two Models of the Subject–Properties Structure". Axiomathes 30, n.º 4 (9 de novembro de 2019): 371–90. http://dx.doi.org/10.1007/s10516-019-09463-w.
Texto completo da fonteVu-Quoc, L., e M. Olsson. "High-Speed Vehicle Models Based on a New Concept of Vehicle/Structure Interaction Component: Part I—Formulation". Journal of Dynamic Systems, Measurement, and Control 115, n.º 1 (1 de março de 1993): 140–47. http://dx.doi.org/10.1115/1.2897389.
Texto completo da fontePavlovska, M. O. "BLOOD PRESSURE, HYPOCHONDRIA AND DEPRESSION: MATHEMATICAL MODELS OF RELATIONSHIP". International Medical Journal, n.º 4(104) (24 de dezembro de 2020): 12–20. http://dx.doi.org/10.37436/2308-5274-2020-4-2.
Texto completo da fonteCao, Yihua, Shuai Nie e Zhenlong Wu. "Numerical simulation of parachute inflation: A methodological review". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, n.º 2 (12 de maio de 2017): 736–66. http://dx.doi.org/10.1177/0954410017705900.
Texto completo da fonteGRIFFITH, BOYCE E., XIAOYU LUO, DAVID M. McQUEEN e CHARLES S. PESKIN. "SIMULATING THE FLUID DYNAMICS OF NATURAL AND PROSTHETIC HEART VALVES USING THE IMMERSED BOUNDARY METHOD". International Journal of Applied Mechanics 01, n.º 01 (março de 2009): 137–77. http://dx.doi.org/10.1142/s1758825109000113.
Texto completo da fonteBouaanani, Najib, Patrick Paultre e Jean Proulx. "Dynamic response of a concrete dam impounding an ice-covered reservoir: Part II. Parametric and numerical study". Canadian Journal of Civil Engineering 31, n.º 6 (1 de dezembro de 2004): 965–76. http://dx.doi.org/10.1139/l04-076.
Texto completo da fonteWang, Zhikai, Xiongliang Yao, Nana Yang e Zhenhuan Xu. "Simulation of Fluid and Structure Interface with Immersed Boundary–Lattice Boltzmann Method Involving Turbulence Models". Mathematical Problems in Engineering 2018 (2018): 1–12. http://dx.doi.org/10.1155/2018/4072758.
Texto completo da fonteWen, Guojun, Haojie Liu, Hongbo Huang, Yudan Wang e Xinyu Shi. "Meshless method simulation and experimental investigation of crack propagation of CBM hydraulic fracturing". Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 73 (2018): 72. http://dx.doi.org/10.2516/ogst/2018074.
Texto completo da fonteSchwartz, Zvi. "Research: Game Theory: Mathematical Models Provide Insights into Hospitality Industry Phenomena". Journal of Hospitality & Tourism Research 21, n.º 1 (fevereiro de 1997): 48–70. http://dx.doi.org/10.1177/109634809702100106.
Texto completo da fonteGrzesikiewicz, Wiesław, e Artur Zbiciak. "Mathematical Formulation of Soft-Contact Problems for Various Rheological Models of Damper". Shock and Vibration 2018 (2018): 1–9. http://dx.doi.org/10.1155/2018/8675016.
Texto completo da fonteFormaggia, Luca, Alexandra Moura e Fabio Nobile. "On the stability of the coupling of 3D and 1D fluid-structure interaction models for blood flow simulations". ESAIM: Mathematical Modelling and Numerical Analysis 41, n.º 4 (julho de 2007): 743–69. http://dx.doi.org/10.1051/m2an:2007039.
Texto completo da fonteZhao, S. Z., X. Y. Xu e M. W. Collins. "The numerical analysis of fluid-solid interactions for blood flow in arterial structures Part 1: A review of models for arterial wall behaviour". Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 212, n.º 4 (1 de abril de 1998): 229–40. http://dx.doi.org/10.1243/0954411981534015.
Texto completo da fonteShangguan, Wenbin. "NONLINEAR MODELING OF HYDRAULIC ENGINE MOUNTS OF A CAR POWERTRAIN WITH COMPUTATIONAL FLUID STRUCTURE INTERACTION FINITE ELEMENT ANALYSIS MODELS". Chinese Journal of Mechanical Engineering 40, n.º 08 (2004): 80. http://dx.doi.org/10.3901/jme.2004.08.080.
Texto completo da fonteMazinani, Iman, Mohammad Mohsen Sarafraz, Zubaidah Ismail, Ahmad Mustafa Hashim, Mohammad Reza Safaei e Somchai Wongwises. "Fluid-structure interaction computational analysis and experiments of tsunami bore forces on coastal bridges". International Journal of Numerical Methods for Heat & Fluid Flow 31, n.º 5 (22 de março de 2021): 1373–95. http://dx.doi.org/10.1108/hff-02-2019-0127.
Texto completo da fonteBuchori, L., Y. Bindar, D. Sasongko e IGBN Makertihartha. "2-d mathematical and numerical modeling of fluid flow inside and outside packing in catalytic packed bed reactor". REAKTOR 5, n.º 1 (13 de junho de 2017): 1. http://dx.doi.org/10.14710/reaktor.5.1.1-7.
Texto completo da fonteBogdevicius, Marijonas, Jolanta Janutėnienė e Oleg Vladimirov. "Simulation of Hydrodynamics Processes of Hydraulic Braking System of Vehicle". Solid State Phenomena 147-149 (janeiro de 2009): 296–301. http://dx.doi.org/10.4028/www.scientific.net/ssp.147-149.296.
Texto completo da fonte