Artigos de revistas sobre o tema "Fluid-structure interaction – Mathematical models"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Fluid-structure interaction – Mathematical models".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Griffith, Boyce E., and Neelesh A. Patankar. "Immersed Methods for Fluid–Structure Interaction." Annual Review of Fluid Mechanics 52, no. 1 (January 5, 2020): 421–48. http://dx.doi.org/10.1146/annurev-fluid-010719-060228.
Texto completo da fonteBenaroya, Haym, and Rene D. Gabbai. "Modelling vortex-induced fluid–structure interaction." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, no. 1868 (November 5, 2007): 1231–74. http://dx.doi.org/10.1098/rsta.2007.2130.
Texto completo da fonteSurana, K. S., B. Blackwell, M. Powell, and J. N. Reddy. "Mathematical models for fluid–solid interaction and their numerical solutions." Journal of Fluids and Structures 50 (October 2014): 184–216. http://dx.doi.org/10.1016/j.jfluidstructs.2014.06.023.
Texto completo da fonteLopes, D., H. Puga, J. C. Teixeira, and S. F. Teixeira. "Fluid–Structure Interaction study of carotid blood flow: Comparison between viscosity models." European Journal of Mechanics - B/Fluids 83 (September 2020): 226–34. http://dx.doi.org/10.1016/j.euromechflu.2020.05.010.
Texto completo da fonteMarom, Gil. "Numerical Methods for Fluid–Structure Interaction Models of Aortic Valves." Archives of Computational Methods in Engineering 22, no. 4 (October 2, 2014): 595–620. http://dx.doi.org/10.1007/s11831-014-9133-9.
Texto completo da fonteTello, Alexis, Ramon Codina, and Joan Baiges. "Fluid structure interaction by means of variational multiscale reduced order models." International Journal for Numerical Methods in Engineering 121, no. 12 (February 27, 2020): 2601–25. http://dx.doi.org/10.1002/nme.6321.
Texto completo da fonteLarsson, Jonas. "A new Hamiltonian formulation for fluids and plasmas. Part 2. MHD models." Journal of Plasma Physics 55, no. 2 (April 1996): 261–78. http://dx.doi.org/10.1017/s0022377800018821.
Texto completo da fonteCottet, Georges-Henri, Emmanuel Maitre, and Thomas Milcent. "Eulerian formulation and level set models for incompressible fluid-structure interaction." ESAIM: Mathematical Modelling and Numerical Analysis 42, no. 3 (April 3, 2008): 471–92. http://dx.doi.org/10.1051/m2an:2008013.
Texto completo da fonteDesjardins, B., and M. J. Esteban. "On Weak Solutions for Fluid‐Rigid Structure Interaction: Compressible and Incompressible Models." Communications in Partial Differential Equations 25, no. 7-8 (January 1999): 263–85. http://dx.doi.org/10.1080/03605300008821553.
Texto completo da fonteColciago, C. M., S. Deparis, and A. Quarteroni. "Comparisons between reduced order models and full 3D models for fluid–structure interaction problems in haemodynamics." Journal of Computational and Applied Mathematics 265 (August 2014): 120–38. http://dx.doi.org/10.1016/j.cam.2013.09.049.
Texto completo da fonteLara, Javier L., Inigo J. Losada, Gabriel Barajas, Maria Maza, and Benedetto Di Paolo. "RECENT ADVANCES IN 3D MODELLING OF WAVE-STRUCTURE INTERACTION WITH CFD MODELS." Coastal Engineering Proceedings, no. 36 (December 30, 2018): 91. http://dx.doi.org/10.9753/icce.v36.waves.91.
Texto completo da fonteTang, Aik Ying, and Norsarahaida Amin. "Some Numerical Approaches to Solve Fluid Structure Interaction Problems in Blood Flow." Abstract and Applied Analysis 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/549189.
Texto completo da fonteBallarin, Francesco, and Gianluigi Rozza. "POD-Galerkin monolithic reduced order models for parametrized fluid-structure interaction problems." International Journal for Numerical Methods in Fluids 82, no. 12 (June 21, 2016): 1010–34. http://dx.doi.org/10.1002/fld.4252.
Texto completo da fonteKamenskiy, Alexey V., Iraklis I. Pipinos, Yuris A. Dzenis, Prateek K. Gupta, Syed A. Jaffar Kazmi, and Jason N. MacTaggart. "A mathematical evaluation of hemodynamic parameters after carotid eversion and conventional patch angioplasty." American Journal of Physiology-Heart and Circulatory Physiology 305, no. 5 (September 1, 2013): H716—H724. http://dx.doi.org/10.1152/ajpheart.00034.2013.
Texto completo da fonteWang, Xiaojing, Guojia Man, and Mengjian Zhang. "Research on the leakage of continuous rotary electro-hydraulic servo motor based on fluid structure interaction analysis." Industrial Lubrication and Tribology 70, no. 3 (April 9, 2018): 544–51. http://dx.doi.org/10.1108/ilt-03-2017-0064.
Texto completo da fonteWeinstein, Alan M. "Mathematical models of renal fluid and electrolyte transport: acknowledging our uncertainty." American Journal of Physiology-Renal Physiology 284, no. 5 (May 1, 2003): F871—F884. http://dx.doi.org/10.1152/ajprenal.00330.2002.
Texto completo da fonteChen, Mingqiang, Linsong Cheng, Renyi Cao, and Chaohui Lyu. "A Study to Investigate Fluid-Solid Interaction Effects on Fluid Flow in Micro Scales." Energies 11, no. 9 (August 22, 2018): 2197. http://dx.doi.org/10.3390/en11092197.
Texto completo da fonteColicchio, G., M. Greco, M. Brocchini, and O. M. Faltinsen. "Hydroelastic behaviour of a structure exposed to an underwater explosion." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2033 (January 28, 2015): 20140103. http://dx.doi.org/10.1098/rsta.2014.0103.
Texto completo da fonteSadeghi, J., M. Khurshudyan, and H. Farahani. "Interacting ghost dark energy models in the higher dimensional cosmology." International Journal of Modern Physics D 25, no. 14 (December 2016): 1650108. http://dx.doi.org/10.1142/s021827181650108x.
Texto completo da fonteBouaanani, Najib, Patrick Paultre, and Jean Proulx. "Dynamic response of a concrete dam impounding an ice-covered reservoir: Part I. Mathematical modelling." Canadian Journal of Civil Engineering 31, no. 6 (December 1, 2004): 956–64. http://dx.doi.org/10.1139/l04-075.
Texto completo da fonteJiang, Qinglei, Lulu Zhai, Leqin Wang, and Dazhuan Wu. "Fluid-Structure Interaction Analysis on Turbulent Annular Seals of Centrifugal Pumps during Transient Process." Mathematical Problems in Engineering 2011 (2011): 1–22. http://dx.doi.org/10.1155/2011/929574.
Texto completo da fonteDrobakha, Hr, I. Neklonskyi, A. Kateshchenok, V. Sobyna, D. Taraduda, L. Borysova, and I. Lysachenko. "Structural and functional simulation of interaction in the field of aviation safety by using matrices." Archives of Materials Science and Engineering 2, no. 95 (February 1, 2019): 74–84. http://dx.doi.org/10.5604/01.3001.0013.1734.
Texto completo da fonteEllam, L., M. Girolami, G. A. Pavliotis, and A. Wilson. "Stochastic modelling of urban structure." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474, no. 2213 (May 2018): 20170700. http://dx.doi.org/10.1098/rspa.2017.0700.
Texto completo da fonteFalahati, M., and M. Behdarvandi Askar. "Seismic Performance of the Pier Considering Structural-Fluid Interaction with ANSYS Software." Journal of Applied Engineering Sciences 7, no. 2 (December 1, 2017): 25–30. http://dx.doi.org/10.1515/jaes-2017-0009.
Texto completo da fontePetruk, O. O., O. T. Vavryk, O. S. Tsareva, and L. M. Hobyr. "MODEL REPRESENTATIONS OF THE MELTS STRUCTURE DESCRIPTION BY THE MODEL OF HARD SPHERES." PRECARPATHIAN BULLETIN OF THE SHEVCHENKO SCIENTIFIC SOCIETY Number, no. 1(59) (January 28, 2021): 72–78. http://dx.doi.org/10.31471/2304-7399-2020-1(59)-72-78.
Texto completo da fonteLaugesen, Jakob L., Olga V. Sosnovtseva, Erik Mosekilde, Niels-Henrik Holstein-Rathlou, and Donald J. Marsh. "Coupling-induced complexity in nephron models of renal blood flow regulation." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 298, no. 4 (April 2010): R997—R1006. http://dx.doi.org/10.1152/ajpregu.00714.2009.
Texto completo da fonteZhekov, Svetozar A., A. V. Myasnikov, and N. A. Belov. "Radiative colliding winds models: the stagnation point singularity." Symposium - International Astronomical Union 193 (1999): 402. http://dx.doi.org/10.1017/s0074180900205949.
Texto completo da fonteBayly, P. V., and S. K. Dutcher. "Steady dynein forces induce flutter instability and propagating waves in mathematical models of flagella." Journal of The Royal Society Interface 13, no. 123 (October 2016): 20160523. http://dx.doi.org/10.1098/rsif.2016.0523.
Texto completo da fonteRejniak, Katarzyna A., and Lisa J. McCawley. "Current trends in mathematical modeling of tumor–microenvironment interactions: a survey of tools and applications." Experimental Biology and Medicine 235, no. 4 (April 2010): 411–23. http://dx.doi.org/10.1258/ebm.2009.009230.
Texto completo da fonteSchiffer, Andreas, and Vito L. Tagarielli. "The response of rigid plates to blast in deep water: fluid–structure interaction experiments." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, no. 2145 (May 9, 2012): 2807–28. http://dx.doi.org/10.1098/rspa.2012.0076.
Texto completo da fonteWang, Na, Akbar Maleki, Mohammad Alhuyi Nazari, Iskander Tlili, and Mostafa Safdari Shadloo. "Thermal Conductivity Modeling of Nanofluids Contain MgO Particles by Employing Different Approaches." Symmetry 12, no. 2 (February 1, 2020): 206. http://dx.doi.org/10.3390/sym12020206.
Texto completo da fonteLukkarinen, Jani. "Multi-state Condensation in Berlin–Kac Spherical Models." Communications in Mathematical Physics 373, no. 1 (December 24, 2019): 389–433. http://dx.doi.org/10.1007/s00220-019-03659-2.
Texto completo da fonteGuerin, Heather Anne L., and Dawn M. Elliott. "The Role of Fiber-Matrix Interactions in a Nonlinear Fiber-Reinforced Strain Energy Model of Tendon." Journal of Biomechanical Engineering 127, no. 2 (November 18, 2004): 345–50. http://dx.doi.org/10.1115/1.1865212.
Texto completo da fonteDallon, J. C., E. J. Evans, and H. Paul Ehrlich. "A mathematical model of collagen lattice contraction." Journal of The Royal Society Interface 11, no. 99 (October 6, 2014): 20140598. http://dx.doi.org/10.1098/rsif.2014.0598.
Texto completo da fontePiwowarczyk, Marek. "Two Models of the Subject–Properties Structure." Axiomathes 30, no. 4 (November 9, 2019): 371–90. http://dx.doi.org/10.1007/s10516-019-09463-w.
Texto completo da fonteVu-Quoc, L., and M. Olsson. "High-Speed Vehicle Models Based on a New Concept of Vehicle/Structure Interaction Component: Part I—Formulation." Journal of Dynamic Systems, Measurement, and Control 115, no. 1 (March 1, 1993): 140–47. http://dx.doi.org/10.1115/1.2897389.
Texto completo da fontePavlovska, M. O. "BLOOD PRESSURE, HYPOCHONDRIA AND DEPRESSION: MATHEMATICAL MODELS OF RELATIONSHIP." International Medical Journal, no. 4(104) (December 24, 2020): 12–20. http://dx.doi.org/10.37436/2308-5274-2020-4-2.
Texto completo da fonteCao, Yihua, Shuai Nie, and Zhenlong Wu. "Numerical simulation of parachute inflation: A methodological review." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, no. 2 (May 12, 2017): 736–66. http://dx.doi.org/10.1177/0954410017705900.
Texto completo da fonteGRIFFITH, BOYCE E., XIAOYU LUO, DAVID M. McQUEEN, and CHARLES S. PESKIN. "SIMULATING THE FLUID DYNAMICS OF NATURAL AND PROSTHETIC HEART VALVES USING THE IMMERSED BOUNDARY METHOD." International Journal of Applied Mechanics 01, no. 01 (March 2009): 137–77. http://dx.doi.org/10.1142/s1758825109000113.
Texto completo da fonteBouaanani, Najib, Patrick Paultre, and Jean Proulx. "Dynamic response of a concrete dam impounding an ice-covered reservoir: Part II. Parametric and numerical study." Canadian Journal of Civil Engineering 31, no. 6 (December 1, 2004): 965–76. http://dx.doi.org/10.1139/l04-076.
Texto completo da fonteWang, Zhikai, Xiongliang Yao, Nana Yang, and Zhenhuan Xu. "Simulation of Fluid and Structure Interface with Immersed Boundary–Lattice Boltzmann Method Involving Turbulence Models." Mathematical Problems in Engineering 2018 (2018): 1–12. http://dx.doi.org/10.1155/2018/4072758.
Texto completo da fonteWen, Guojun, Haojie Liu, Hongbo Huang, Yudan Wang, and Xinyu Shi. "Meshless method simulation and experimental investigation of crack propagation of CBM hydraulic fracturing." Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 73 (2018): 72. http://dx.doi.org/10.2516/ogst/2018074.
Texto completo da fonteSchwartz, Zvi. "Research: Game Theory: Mathematical Models Provide Insights into Hospitality Industry Phenomena." Journal of Hospitality & Tourism Research 21, no. 1 (February 1997): 48–70. http://dx.doi.org/10.1177/109634809702100106.
Texto completo da fonteGrzesikiewicz, Wiesław, and Artur Zbiciak. "Mathematical Formulation of Soft-Contact Problems for Various Rheological Models of Damper." Shock and Vibration 2018 (2018): 1–9. http://dx.doi.org/10.1155/2018/8675016.
Texto completo da fonteFormaggia, Luca, Alexandra Moura, and Fabio Nobile. "On the stability of the coupling of 3D and 1D fluid-structure interaction models for blood flow simulations." ESAIM: Mathematical Modelling and Numerical Analysis 41, no. 4 (July 2007): 743–69. http://dx.doi.org/10.1051/m2an:2007039.
Texto completo da fonteZhao, S. Z., X. Y. Xu, and M. W. Collins. "The numerical analysis of fluid-solid interactions for blood flow in arterial structures Part 1: A review of models for arterial wall behaviour." Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 212, no. 4 (April 1, 1998): 229–40. http://dx.doi.org/10.1243/0954411981534015.
Texto completo da fonteShangguan, Wenbin. "NONLINEAR MODELING OF HYDRAULIC ENGINE MOUNTS OF A CAR POWERTRAIN WITH COMPUTATIONAL FLUID STRUCTURE INTERACTION FINITE ELEMENT ANALYSIS MODELS." Chinese Journal of Mechanical Engineering 40, no. 08 (2004): 80. http://dx.doi.org/10.3901/jme.2004.08.080.
Texto completo da fonteMazinani, Iman, Mohammad Mohsen Sarafraz, Zubaidah Ismail, Ahmad Mustafa Hashim, Mohammad Reza Safaei, and Somchai Wongwises. "Fluid-structure interaction computational analysis and experiments of tsunami bore forces on coastal bridges." International Journal of Numerical Methods for Heat & Fluid Flow 31, no. 5 (March 22, 2021): 1373–95. http://dx.doi.org/10.1108/hff-02-2019-0127.
Texto completo da fonteBuchori, L., Y. Bindar, D. Sasongko, and IGBN Makertihartha. "2-d mathematical and numerical modeling of fluid flow inside and outside packing in catalytic packed bed reactor." REAKTOR 5, no. 1 (June 13, 2017): 1. http://dx.doi.org/10.14710/reaktor.5.1.1-7.
Texto completo da fonteBogdevicius, Marijonas, Jolanta Janutėnienė, and Oleg Vladimirov. "Simulation of Hydrodynamics Processes of Hydraulic Braking System of Vehicle." Solid State Phenomena 147-149 (January 2009): 296–301. http://dx.doi.org/10.4028/www.scientific.net/ssp.147-149.296.
Texto completo da fonte