Literatura científica selecionada sobre o tema "Fluid-structure interaction"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Fluid-structure interaction".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Fluid-structure interaction"

1

Xing, Jing Tang. "Fluid-Structure Interaction". Strain 39, n.º 4 (novembro de 2003): 186–87. http://dx.doi.org/10.1046/j.0039-2103.2003.00067.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Bazilevs, Yuri, Kenji Takizawa e Tayfun E. Tezduyar. "Fluid–structure interaction". Computational Mechanics 55, n.º 6 (10 de maio de 2015): 1057–58. http://dx.doi.org/10.1007/s00466-015-1162-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Lee, Kyoungsoo, Ziaul Huque, Raghava Kommalapati e Sang-Eul Han. "The Evaluation of Aerodynamic Interaction of Wind Blade Using Fluid Structure Interaction Method". Journal of Clean Energy Technologies 3, n.º 4 (2015): 270–75. http://dx.doi.org/10.7763/jocet.2015.v3.207.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Ortiz, Jose L., e Alan A. Barhorst. "Modeling Fluid-Structure Interaction". Journal of Guidance, Control, and Dynamics 20, n.º 6 (novembro de 1997): 1221–28. http://dx.doi.org/10.2514/2.4180.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Ko, Sung H. "Structure–fluid interaction problems". Journal of the Acoustical Society of America 88, n.º 1 (julho de 1990): 367. http://dx.doi.org/10.1121/1.399912.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Semenov, Yuriy A. "Fluid/Structure Interactions". Journal of Marine Science and Engineering 10, n.º 2 (26 de janeiro de 2022): 159. http://dx.doi.org/10.3390/jmse10020159.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Takizawa, Kenji, Yuri Bazilevs e Tayfun E. Tezduyar. "Computational fluid mechanics and fluid–structure interaction". Computational Mechanics 50, n.º 6 (18 de setembro de 2012): 665. http://dx.doi.org/10.1007/s00466-012-0793-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Bazilevs, Yuri, Kenji Takizawa e Tayfun E. Tezduyar. "Biomedical fluid mechanics and fluid–structure interaction". Computational Mechanics 54, n.º 4 (15 de julho de 2014): 893. http://dx.doi.org/10.1007/s00466-014-1056-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Souli, M., K. Mahmadi e N. Aquelet. "ALE and Fluid Structure Interaction". Materials Science Forum 465-466 (setembro de 2004): 143–50. http://dx.doi.org/10.4028/www.scientific.net/msf.465-466.143.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Chung, H., e M. D. Bernstein. "Topics in Fluid Structure Interaction". Journal of Pressure Vessel Technology 107, n.º 1 (1 de fevereiro de 1985): 99. http://dx.doi.org/10.1115/1.3264418.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Fluid-structure interaction"

1

Mawson, Mark. "Interactive fluid-structure interaction with many-core accelerators". Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/interactive-fluidstructure-interaction-with-manycore-accelerators(a4fc2068-bac7-4511-960d-41d2560a0ea1).html.

Texto completo da fonte
Resumo:
The use of accelerator technology, particularly Graphics Processing Units (GPUs), for scientific computing has increased greatly over the last decade. While this technology allows larger and more complicated problems to be solved faster than before it also presents another opportunity: the real-time and interactive solution of problems. This work aims to investigate the progress that GPU technology has made towards allowing fluid-structure interaction (FSI) problems to be solved in real-time, and to facilitate user interaction with such a solver. A mesoscopic scale fluid flow solver is implemented on third generation nVidia ‘Kepler’ GPUs in two and three dimensions, and its performance studied and compared with existing literature. Following careful optimisation the solvers are found to be at least as efficient as existing work, reaching peak efficiencies of 93% compared with theoretical values. These solvers are then coupled with a novel immersed boundary method, allowing boundaries defined at arbitrary coordinates to interact with the structured fluid domain through a set of singular forces. The limiting factor of the performance of this method is found to be the integration of forces and velocities over the fluid and boundaries; the arbitrary location of boundary markers makes the memory accesses during these integrations largely random, leading to poor utilisation of the available memory bandwidth. In sample cases, the efficiency of the method is found to be as low as 2.7%, although in most scenarios this inefficiency is masked by the fact that the time taken to evolve the fluid flow dominates the overall execution time of the solver. Finally, techniques to visualise the fluid flow in-situ are implemented, and used to allow user interaction with the solvers. Initially this is achieved via keyboard and mouse to control the fluid properties and create boundaries within the fluid, and later by using an image based depth sensor to import real world geometry into the fluid. The work concludes that, for 2D problems, real-time interactive FSI solvers can be implemented on a single laptop-based GPU. In 3D the memory (both size and bandwidth) of the GPU limits the solver to relatively simple cases. Recommendations for future work to allow larger and more complicated test cases to be solved in real-time are then made to complete the work.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Altstadt, Eberhard, Helmar Carl e Rainer Weiß. "Fluid-Structure Interaction Investigations for Pipelines". Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-28993.

Texto completo da fonte
Resumo:
The influence of the fluid-structure interaction on the magnitude fo the loads on pipe walls and support structures is not yet completely understood. In case of a dynamic load caused by a pressure wave, the stresses in pipe walls, especially in bends, are different from the static case.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Plessas, Spyridon D. "Fluid-structure interaction in composite structures". Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/41432.

Texto completo da fonte
Resumo:
Approved for public release; distribution is unlimited.
In this research, dynamic characteristics of polymer composite beam and plate structures were studied when the structures were in contact with water. The effect of fluid-structure interaction (FSI) on natural frequencies, mode shapes, and dynamic responses was examined for polymer composite structures using multiphysics-based computational techniques. Composite structures were modeled using the finite element method. The fluid was modeled as an acoustic medium using the cellular automata technique. Both techniques were coupled so that both fluid and structure could interact bi-directionally. In order to make the coupling easier, the beam and plate finite elements have only displacement degrees of freedom but no rotational degrees of freedom. The fast Fourier transform (FFT) technique was applied to the transient responses of the composite structures with and without FSI, respectively, so that the effect of FSI can be examined by comparing the two results. The study showed that the effect of FSI is significant on dynamic properties of polymer composite structures. Some previous experimental observations were confirmed using the results from the computer simulations, which also enhanced understanding the effect of FSI on dynamic responses of composite structures.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Randall, Richard John. "Fluid-structure interaction of submerged shells". Thesis, Brunel University, 1990. http://bura.brunel.ac.uk/handle/2438/5446.

Texto completo da fonte
Resumo:
A general three-dimensional hydroelasticity theory for the evaluation of responses has been adapted to formulate hydrodynamic coefficients for submerged shell-type structures. The derivation of the theory has been presented and is placed in context with other methods of analysis. The ability of this form of analysis to offer an insight into the physical behaviour of practical systems is demonstrated. The influence of external boundaries and fluid viscosity was considered separately using a flexible cylinder as the model. When the surrounding fluid is water, viscosity was assessed to be significant for slender structural members and flexible pipes and in situations where the clearance to an outer casing was slight. To validate the three-dimensional hydroelasticity theory, predictions of resonance frequencies and mode shapes were compared, with measured data from trials undertaken in enclosed tanks. These data exhibited differences due to the position of the test structures in relation to free and fixed boundaries. The rationale of the testing programme and practical considerations of instrumentation, capture and storage of data are described in detail. At first sight a relatively unsophisticated analytical method appeared to offer better correlation with the measured data than the hydroelastic solution. This impression was mistaken, the agreement was merely fortuitous as only the hydroelastic approach is capable of reproducing-the trends recorded in the experiments. The significance of an accurate dynamic analysis using finite elements and the influence of physical factors such as buoyancy on the predicted results are also examined.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Giannopapa, Christina-Grigoria. "Fluid structure interaction in flexible vessels". Thesis, King's College London (University of London), 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413425.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Wright, Stewart Andrew. "Aspects of unsteady fluid-structure interaction". Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621939.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Altstadt, Eberhard, Helmar Carl e Rainer Weiß. "Fluid-Structure Interaction Investigations for Pipelines". Forschungszentrum Rossendorf, 2003. https://hzdr.qucosa.de/id/qucosa%3A21726.

Texto completo da fonte
Resumo:
The influence of the fluid-structure interaction on the magnitude fo the loads on pipe walls and support structures is not yet completely understood. In case of a dynamic load caused by a pressure wave, the stresses in pipe walls, especially in bends, are different from the static case.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Holder, Justin. "Fluid Structure Interaction in Compressible Flows". University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin159584692691518.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Paton, Jonathan. "Computational fluid dynamics and fluid structure interaction of yacht sails". Thesis, University of Nottingham, 2011. http://eprints.nottingham.ac.uk/14036/.

Texto completo da fonte
Resumo:
This thesis focuses on the numerical simulation of yacht sails using both computational fluid dynamics (CFD) and fluid structure interaction (FSI) modelling. The modelling of yacht sails using RANS based CFD and the SST turbulence model is justified with validation against wind tunnel studies (Collie, 2005; Wilkinson, 1983). The CFD method is found to perform well, with the ability to predict flow separation, velocity and pressure profiles satisfactorily. This work is extended to look into multiple sail interaction and the impact of the mast upon performance. A FSI solution is proposed next, coupling viscous RANS based CFD and a structural code capable of modelling anistropic laminate sails (RELAX, 2009). The aim of this FSI solution is to offer the ability to investigate sails' performance and flying shapes more accurately than with current methods. The FSI solution is validated with the comparison to flying shapes of offwind sails from a bespoke wind tunnel experiment carried out at the University of Nottingham. The method predicted offwind flying shapes to a greater level of accuracy than previous methods. Finally the CFD and FSI solution described here above is showcased and used to model a full scale Volvo Open 70 racing yacht, including multiple offwind laminate sails, mast, hull, deck and twisted wind profile. The model is used to demonstrate the potential of viscous CFD and FSI to predict performance and aid in the design of high performance sails and yachts. The method predicted flying shapes and performance through a range of realistic sail trims providing valuable data for crews, naval architects and sail designers.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Gregson, James. "Fluid-structure interaction simulations in liquid-lead". Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/12340.

Texto completo da fonte
Resumo:
An Eulerian compressible flow solver suitable for simulating liquid-lead flows involving fluid-structure interaction, cavitation and free surfaces was developed and applied to investigation of a magnetized target fusion reactor concept. The numerical methods used and results of common test cases are presented. Simulations were then performed to assess the smoothing properties of interacting mechanically generated shocks in liquid lead, as well as the early-time collapse behavior of cavities due to free surface reflection of such shocks. An empirical formula to estimate shock smoothness based on the shock smoothing results is presented, and issues related to shock driven cavity collapse in liquid liner magnetized target fusion reactors are presented and discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Fluid-structure interaction"

1

Bungartz, Hans-Joachim, e Michael Schäfer, eds. Fluid-Structure Interaction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-34596-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Sigrist, Jean-François. Fluid-Structure Interaction. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118927762.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

1941-, Chakrabarti Subrata K., e Brebbia C. A, eds. Fluid structure interaction. Southampton: WIT Press, 2001.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Bazilevs, Yuri, Kenji Takizawa e Tayfun E. Tezduyar. Computational Fluid-Structure Interaction. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118483565.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Bungartz, Hans-Joachim, Miriam Mehl e Michael Schäfer, eds. Fluid Structure Interaction II. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14206-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

International Conference on Fluid Structure Interaction (5th 2009 Chersonēsos, Crete, Greece). Fluid structure interaction V. Editado por Brebbia C. A e Wessex Institute of Technology. Southampton: WIT, 2009.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

R, Ohayon, e United States. National Aeronautics and Space Administration., eds. Coupled fluid-structure interaction. [Washington, DC]: National Aeronautics and Space Administration, 1991.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

International Conference on Fluid Structure Interaction (2nd 2003 Cadiz, Spain). Fluid structure interaction II. Southampton: WIT, 2003.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Canary Islands) International Conference on Fluid Structure Interaction (7th 2013 Las Palmas. Fluid structure interaction VII. Editado por Brebbia C. A, Rodríguez G. R e Wessex Institute of Technology. Southampton: WIT Press, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

International Conference on Fluid Structure Interaction (6th 2011 Orlando, Fla.). Fluid structure interaction VI. Editado por Kassab, A. (Alain J.). Southampton, UK: WIT Press, 2011.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Fluid-structure interaction"

1

Dolejší, Vít, e Miloslav Feistauer. "Fluid-Structure Interaction". In Discontinuous Galerkin Method, 521–51. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3_10.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Doyle, James F. "Structure-Fluid Interaction". In Wave Propagation in Structures, 243–74. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1832-6_8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Kleinstreuer, Clement. "Fluid–Structure Interaction". In Fluid Mechanics and Its Applications, 435–79. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-8670-0_8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Souli, Mhamed. "Fluid-Structure Interaction". In Arbitrary Lagrangian-Eulerian and Fluid-Structure Interaction, 51–108. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118557884.ch2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Yang, Z. "Fluid-Structure Interaction". In Multiphysics Modeling with Application to Biomedical Engineering, 55–73. Boca Raton : CRC Press, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9780367510800-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Tu, Jiyuan, Kiao Inthavong e Kelvin Kian Loong Wong. "Computational Fluid Structure Interaction". In Computational Hemodynamics – Theory, Modelling and Applications, 95–154. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9594-4_5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Brebbia, C. A. "Fluid Structure Interaction Problems". In Vibrations of Engineering Structures, 225–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82390-9_13.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Berezin, Ihor, Prasanta Sarkar e Jacek Malecki. "Fluid–Structure Interaction Simulation". In Recent Progress in Flow Control for Practical Flows, 263–81. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50568-8_14.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Liu, Zhen. "Hydrodynomechanics: Fluid-Structure Interaction". In Multiphysics in Porous Materials, 319–32. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93028-2_25.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Birken, Philipp. "Thermal Fluid Structure Interaction". In Numerical Methods for Unsteady Compressible Flow Problems, 177–86. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003025214-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Fluid-structure interaction"

1

Jecl, R., L. Škerget e J. Kramer. "Heat and mass transfer in compressible fluid saturated porous media with the boundary element method". In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Pelosi, M., e M. Ivantysynova. "A novel fluid-structure interaction model for lubricating gaps of piston machines". In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090021.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Yu, P., K. S. Yeo, X. Y. Wang e S. J. Ang. "A singular value decomposition based generalized finite difference method for fluid solid interaction problems". In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090031.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Ushijima, S., e N. Kuroda. "Multiphase modeling to predict finite deformations of elastic objects in free surface flows". In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090041.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Belloli, M., B. Pizzigoni, F. Ripamonti e D. Rocchi. "Fluid-structure interaction between trains and noise-reduction barriers: numerical and experimental analysis". In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090051.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Fujita, S., T. Harima e H. Osaka. "Turbulent jets issuing from the rectangular nozzle with a rectangular notch at the midspan". In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090061.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Liang, C. C., e W. M. Tseng. "Numerical study of water barriers produced by underwater explosions". In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090071.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Fujita, K. "Simulation analysis using CFD on vibration behaviors of circular cylinders subjected to free jets through narrow gaps in the vicinity of walls". In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090081.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Moe, G., e J. M. Niedzwecki. "Flow-induced vibrations of offshore flare towers and flare booms". In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090091.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Jurado, J. Á., A. León, S. Hernández e F. Nieto. "Aeroelastic analysis of long-span bridges using time domain methods". In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090101.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Fluid-structure interaction"

1

Benaroya, Haym, e Timothy Wei. Modeling Fluid Structure Interaction. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2000. http://dx.doi.org/10.21236/ada382782.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Isaac, Daron, e Michael Iverson. Automated Fluid-Structure Interaction Analysis. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 2003. http://dx.doi.org/10.21236/ada435321.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Barone, Matthew Franklin, Irina Kalashnikova, Daniel Joseph Segalman e Matthew Robert Brake. Reduced order modeling of fluid/structure interaction. Office of Scientific and Technical Information (OSTI), novembro de 2009. http://dx.doi.org/10.2172/974411.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Schunk, Peter. Fluid-Structure Interaction of Deforming Porous Media. Office of Scientific and Technical Information (OSTI), novembro de 2017. http://dx.doi.org/10.2172/1411752.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Wood, Stephen L., e Ralf Deiterding. Shock-driven fluid-structure interaction for civil design. Office of Scientific and Technical Information (OSTI), novembro de 2011. http://dx.doi.org/10.2172/1041422.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Schroeder, Erwin A. Infinite Elements for Three-Dimensional Fluid-Structure Interaction Problems. Fort Belvoir, VA: Defense Technical Information Center, novembro de 1987. http://dx.doi.org/10.21236/ada189462.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Barone, Matthew Franklin, e Jeffrey L. Payne. Methods for simulation-based analysis of fluid-structure interaction. Office of Scientific and Technical Information (OSTI), outubro de 2005. http://dx.doi.org/10.2172/875605.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Zhu, Minjie, e Michael Scott. Fluid-Structure Interaction and Python-Scripting Capabilities in OpenSees. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, agosto de 2019. http://dx.doi.org/10.55461/vdix3057.

Texto completo da fonte
Resumo:
Building upon recent advances in OpenSees, the goals of this project are to expand the framework’s Python scripting capabilities and to further develop its fluid–structure interaction (FSI) simulation capabilities, which are based on the particle finite-element method (PFEM). At its inception, the FSI modules in OpenSees were based on Python scripting. To accomplish FSI simulations in OpenSees, Python commands have been added for a limited number of pre-existing element and material commands, e.g., linear-elastic triangle elements and beam–column elements with Concrete01/Steel01 fiber sections. Incorporation of hundreds of constitutive models and element formulations under the Python umbrella for FSI and general OpenSees use remain to be done. Although the original scripting language, Tcl, in OpenSees is string based, powerful, and easy to learn, it is not suitable for mathematical computations. Recent trends in scripting languages for engineering applications have embraced more general, scientific languages such as Python, which has evolved to a large community with numerous libraries for numerical computing, data analysis, scientific visualization, and web development. These libraries can be utilized with the FSI simulation for tsunami analysis. Extending OpenSees to Python will help OpenSees keep pace with new scripting developments from the scientific computing community and make the framework more accessible to graduate students, who likely have learned Python as undergraduates.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Tezduyar, Tayfun E. Multiscale and Sequential Coupling Techniques for Fluid-Structure Interaction Computations. Fort Belvoir, VA: Defense Technical Information Center, outubro de 2012. http://dx.doi.org/10.21236/ada585768.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Liszka, Tadeusz J., C. A. Duarte e O. P. Hamzeh. Hp-Meshless Cloud Method for Dynamic Fracture in Fluid Structure Interaction. Fort Belvoir, VA: Defense Technical Information Center, março de 2000. http://dx.doi.org/10.21236/ada376673.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia