Artigos de revistas sobre o tema "Flood estimation (Australia)"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Flood estimation (Australia)".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Hasanzadeh Nafari, R., T. Ngo e W. Lehman. "Results comparison and model validation for flood loss functions in Australian geographical conditions". Natural Hazards and Earth System Sciences Discussions 3, n.º 6 (12 de junho de 2015): 3823–60. http://dx.doi.org/10.5194/nhessd-3-3823-2015.
Texto completo da fonteHasanzadeh Nafari, R., T. Ngo e W. Lehman. "Calibration and validation of FLFA<sub>rs</sub> -- a new flood loss function for Australian residential structures". Natural Hazards and Earth System Sciences 16, n.º 1 (18 de janeiro de 2016): 15–27. http://dx.doi.org/10.5194/nhess-16-15-2016.
Texto completo da fonteHaddad, Khaled, e Ataur Rahman. "Development of a Large Flood Regionalisation Model Considering Spatial Dependence—Application to Ungauged Catchments in Australia". Water 11, n.º 4 (1 de abril de 2019): 677. http://dx.doi.org/10.3390/w11040677.
Texto completo da fonteWu, Wenyan, Seth Westra e Michael Leonard. "Estimating the probability of compound floods in estuarine regions". Hydrology and Earth System Sciences 25, n.º 5 (26 de maio de 2021): 2821–41. http://dx.doi.org/10.5194/hess-25-2821-2021.
Texto completo da fonteZalnezhad, Amir, Ataur Rahman, Nastaran Nasiri, Mehdi Vafakhah, Bijan Samali e Farhad Ahamed. "Comparing Performance of ANN and SVM Methods for Regional Flood Frequency Analysis in South-East Australia". Water 14, n.º 20 (20 de outubro de 2022): 3323. http://dx.doi.org/10.3390/w14203323.
Texto completo da fonteLoveridge, Melanie, e Ataur Rahman. "Effects of Probability-Distributed Losses on Flood Estimates Using Event-Based Rainfall-Runoff Models". Water 13, n.º 15 (27 de julho de 2021): 2049. http://dx.doi.org/10.3390/w13152049.
Texto completo da fonteKhan, Zaved, Ataur Rahman e Fazlul Karim. "An Assessment of Uncertainties in Flood Frequency Estimation Using Bootstrapping and Monte Carlo Simulation". Hydrology 10, n.º 1 (10 de janeiro de 2023): 18. http://dx.doi.org/10.3390/hydrology10010018.
Texto completo da fonteLoveridge, Melanie, Ataur Rahman e Peter Hill. "Applicability of a physically based soil water model (SWMOD) in design flood estimation in eastern Australia". Hydrology Research 48, n.º 6 (28 de dezembro de 2016): 1652–65. http://dx.doi.org/10.2166/nh.2016.118.
Texto completo da fonteWahalathantri, Buddhi, Weena Lokuge, Warna Karunasena e Sujeeva Setunge. "Quantitative assessment of flood discharges and floodway failures through cross-cultivation of advancement in knowledge and traditional practices". International Journal of Disaster Resilience in the Built Environment 9, n.º 4/5 (16 de novembro de 2018): 435–56. http://dx.doi.org/10.1108/ijdrbe-09-2017-0051.
Texto completo da fonteFranks, S. W., C. J. White e M. Gensen. "Estimating extreme flood events – assumptions, uncertainty and error". Proceedings of the International Association of Hydrological Sciences 369 (11 de junho de 2015): 31–36. http://dx.doi.org/10.5194/piahs-369-31-2015.
Texto completo da fonteGamage, S. H. P. W., G. A. Hewa e S. Beecham. "Probability distributions for explaining hydrological losses in South Australian catchments". Hydrology and Earth System Sciences Discussions 10, n.º 4 (10 de abril de 2013): 4597–626. http://dx.doi.org/10.5194/hessd-10-4597-2013.
Texto completo da fonteRatnayake, Dinesh C., Guna A. Hewa e David J. Kemp. "Challenges in Quantifying Losses in a Partly Urbanised Catchment: A South Australian Case Study". Water 14, n.º 8 (18 de abril de 2022): 1313. http://dx.doi.org/10.3390/w14081313.
Texto completo da fonteHaddad, Khaled, e Ataur Rahman. "Regional Flood Estimation in New South Wales Australia Using Generalized Least Squares Quantile Regression". Journal of Hydrologic Engineering 16, n.º 11 (novembro de 2011): 920–25. http://dx.doi.org/10.1061/(asce)he.1943-5584.0000395.
Texto completo da fonteAziz, K., M. M. Haque, A. Rahman, A. Y. Shamseldin e M. Shoaib. "Flood estimation in ungauged catchments: application of artificial intelligence based methods for Eastern Australia". Stochastic Environmental Research and Risk Assessment 31, n.º 6 (6 de junho de 2016): 1499–514. http://dx.doi.org/10.1007/s00477-016-1272-0.
Texto completo da fonteNoor, Farhana, Orpita U. Laz, Khaled Haddad, Mohammad A. Alim e Ataur Rahman. "Comparison between Quantile Regression Technique and Generalised Additive Model for Regional Flood Frequency Analysis: A Case Study for Victoria, Australia". Water 14, n.º 22 (11 de novembro de 2022): 3627. http://dx.doi.org/10.3390/w14223627.
Texto completo da fonteFranks, S. W. "Multi-decadal climate variability, New South Wales, Australia". Water Science and Technology 49, n.º 7 (1 de abril de 2004): 133–40. http://dx.doi.org/10.2166/wst.2004.0437.
Texto completo da fonteFlatley, Alissa, e Ian Rutherfurd. "Comparison of Regionalisation Techniques for Peak Streamflow Estimation in Small Catchments in the Pilbara, Australia". Hydrology 9, n.º 10 (24 de setembro de 2022): 165. http://dx.doi.org/10.3390/hydrology9100165.
Texto completo da fonteZhang, Yongqiang, e David Post. "How good are hydrological models for gap-filling streamflow data?" Hydrology and Earth System Sciences 22, n.º 8 (30 de agosto de 2018): 4593–604. http://dx.doi.org/10.5194/hess-22-4593-2018.
Texto completo da fonteAziz, K., Sohail Rai e A. Rahman. "Design flood estimation in ungauged catchments using genetic algorithm-based artificial neural network (GAANN) technique for Australia". Natural Hazards 77, n.º 2 (10 de fevereiro de 2015): 805–21. http://dx.doi.org/10.1007/s11069-015-1625-x.
Texto completo da fonteCaballero, Wilfredo Llacer, e Ataur Rahman. "Application of Monte Carlo simulation technique for flood estimation for two catchments in New South Wales, Australia". Natural Hazards 74, n.º 3 (31 de maio de 2014): 1475–88. http://dx.doi.org/10.1007/s11069-014-1251-z.
Texto completo da fonteCaballero, Wilfredo Llacer, e Ataur Rahman. "Development of regionalized joint probability approach to flood estimation: a case study for Eastern New South Wales, Australia". Hydrological Processes 28, n.º 13 (11 de julho de 2013): 4001–10. http://dx.doi.org/10.1002/hyp.9919.
Texto completo da fonteMojtahedi, Mohammad, e Bee Lan Oo. "Built Infrastructure Conditions Mediate the Relationship between Stakeholders Attributes and Flood Damage: An Empirical Case Study". Sustainability 13, n.º 17 (30 de agosto de 2021): 9739. http://dx.doi.org/10.3390/su13179739.
Texto completo da fonteHaddad, Khaled, e Ataur Rahman. "Selection of the best fit flood frequency distribution and parameter estimation procedure: a case study for Tasmania in Australia". Stochastic Environmental Research and Risk Assessment 25, n.º 3 (10 de julho de 2010): 415–28. http://dx.doi.org/10.1007/s00477-010-0412-1.
Texto completo da fonteCharalambous, James, Ataur Rahman e Don Carroll. "Application of Monte Carlo Simulation Technique to Design Flood Estimation: A Case Study for North Johnstone River in Queensland, Australia". Water Resources Management 27, n.º 11 (5 de julho de 2013): 4099–111. http://dx.doi.org/10.1007/s11269-013-0398-9.
Texto completo da fonteShi, Zhuolin, Qianqian Chen e Chang Huang. "The Influence of River Morphology on the Remote Sensing Based Discharge Estimation: Implications for Satellite Virtual Gauge Establishment". Water 14, n.º 23 (26 de novembro de 2022): 3854. http://dx.doi.org/10.3390/w14233854.
Texto completo da fonteGlamore, William, e Buddhima Indraratna. "A two-stage decision support tool for restoring tidal flows to flood mitigation drains affected by acid sulfate soil: case study of Broughton Creek floodplain, New South Wales, Australia". Soil Research 42, n.º 6 (2004): 639. http://dx.doi.org/10.1071/sr03166.
Texto completo da fonteYilmaz, A. G., I. Hossain e B. J. C. Perera. "Effect of climate change and variability on extreme rainfall intensity–frequency–duration relationships: a case study of Melbourne". Hydrology and Earth System Sciences 18, n.º 10 (15 de outubro de 2014): 4065–76. http://dx.doi.org/10.5194/hess-18-4065-2014.
Texto completo da fonteYilmaz, A. G., I. Hossain e B. J. C. Perera. "Effect of climate change and variability on extreme rainfall intensity–frequency–duration relationships: a case study of Melbourne". Hydrology and Earth System Sciences Discussions 11, n.º 6 (16 de junho de 2014): 6311–42. http://dx.doi.org/10.5194/hessd-11-6311-2014.
Texto completo da fonteNewby, M., S. W. Franks e C. J. White. "Estimating urban flood risk – uncertainty in design criteria". Proceedings of the International Association of Hydrological Sciences 370 (11 de junho de 2015): 3–7. http://dx.doi.org/10.5194/piahs-370-3-2015.
Texto completo da fonteFranks, S. W. "Identification of a change in climate state using regional flood data". Hydrology and Earth System Sciences 6, n.º 1 (28 de fevereiro de 2002): 11–16. http://dx.doi.org/10.5194/hess-6-11-2002.
Texto completo da fonteAshouri, Hamed, Kuo-Lin Hsu, Soroosh Sorooshian, Dan K. Braithwaite, Kenneth R. Knapp, L. Dewayne Cecil, Brian R. Nelson e Olivier P. Prat. "PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies". Bulletin of the American Meteorological Society 96, n.º 1 (1 de janeiro de 2015): 69–83. http://dx.doi.org/10.1175/bams-d-13-00068.1.
Texto completo da fonteRoche, Kevin M., K. John McAneney, Keping Chen e Ryan P. Crompton. "The Australian Great Flood of 1954: Estimating the Cost of a Similar Event in 2011". Weather, Climate, and Society 5, n.º 3 (1 de julho de 2013): 199–209. http://dx.doi.org/10.1175/wcas-d-12-00018.1.
Texto completo da fonteMiddelmann-Fernandes, M. H. "Flood damage estimation beyond stage-damage functions: an Australian example". Journal of Flood Risk Management 3, n.º 1 (março de 2010): 88–96. http://dx.doi.org/10.1111/j.1753-318x.2009.01058.x.
Texto completo da fonteGamage, S. H. P. W., G. A. Hewa e S. Beecham. "Probability distributions for explaining hydrological losses in South Australian catchments". Hydrology and Earth System Sciences 17, n.º 11 (15 de novembro de 2013): 4541–53. http://dx.doi.org/10.5194/hess-17-4541-2013.
Texto completo da fonteLoveridge, Melanie, e Ataur Rahman. "Monte Carlo simulation for design flood estimation: a review of Australian practice". Australasian Journal of Water Resources 22, n.º 1 (2 de janeiro de 2018): 52–70. http://dx.doi.org/10.1080/13241583.2018.1453979.
Texto completo da fonteCallaghan, David P., e Michael G. Hughes. "Assessing flood hazard changes using climate model forcing". Natural Hazards and Earth System Sciences 22, n.º 8 (1 de agosto de 2022): 2459–72. http://dx.doi.org/10.5194/nhess-22-2459-2022.
Texto completo da fonteSmith, Ian, e Clive McAlpine. "Estimating future changes in flood risk: Case study of the Brisbane River, Australia". Climate Risk Management 6 (2014): 6–17. http://dx.doi.org/10.1016/j.crm.2014.11.002.
Texto completo da fonteSamat, S. R., N. Othman e N. F. M. Zaidi. "The Development of Rainfall Temporal Pattern for Kuantan River Basin". International Journal of Engineering Technology and Sciences 5, n.º 2 (1 de outubro de 2018): 14–21. http://dx.doi.org/10.15282/ijets.v5i2.1376.
Texto completo da fonteHasanzadeh Nafari, Roozbeh, Mattia Amadio, Tuan Ngo e Jaroslav Mysiak. "Flood loss modelling with FLF-IT: a new flood loss function for Italian residential structures". Natural Hazards and Earth System Sciences 17, n.º 7 (6 de julho de 2017): 1047–59. http://dx.doi.org/10.5194/nhess-17-1047-2017.
Texto completo da fonteReifels, Lennart, Bridget Bassilios, Matthew J. Spittal, Kylie King, Justine Fletcher e Jane Pirkis. "Patterns and Predictors of Primary Mental Health Service Use Following Bushfire and Flood Disasters". Disaster Medicine and Public Health Preparedness 9, n.º 3 (14 de abril de 2015): 275–82. http://dx.doi.org/10.1017/dmp.2015.23.
Texto completo da fonteMacdonald, Ben C. T., Graeme D. Schwenke, Annabelle McPherson, Clarence Mercer, Jonathan Baird e Gunasekhar Nachimuthu. "Soil water deficit effects on soil inorganic nitrogen in alternate-furrow flood irrigated Australian cotton production systems". Soil Research 60, n.º 2 (4 de novembro de 2021): 137–46. http://dx.doi.org/10.1071/sr20223.
Texto completo da fonteAli, Noorfathiah Che, Yuliarahmadila Erfen, Nurul Farehah Amat, Zawani Mohd Zahudi e Mohd Shalahuddin Adnan. "Development of Temporal Rainfall Pattern for Segamat District". Applied Mechanics and Materials 773-774 (julho de 2015): 1205–9. http://dx.doi.org/10.4028/www.scientific.net/amm.773-774.1205.
Texto completo da fonteTimms, W. A., R. R. Young e N. Huth. "Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment, Australia". Hydrology and Earth System Sciences Discussions 8, n.º 6 (15 de novembro de 2011): 10053–93. http://dx.doi.org/10.5194/hessd-8-10053-2011.
Texto completo da fontePratiwi, Dheka Shara, Mochamad Teguh e Widodo Pawirodikromo. "An Implementation of the HAZUS Method for Estimating Potential Damage of Residential Houses at Pacitan Sub-district, East Java, Indonesia due to Earthquake". MATEC Web of Conferences 280 (2019): 01008. http://dx.doi.org/10.1051/matecconf/201928001008.
Texto completo da fonteTimms, W. A., R. R. Young e N. Huth. "Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment, Australia". Hydrology and Earth System Sciences 16, n.º 4 (11 de abril de 2012): 1203–19. http://dx.doi.org/10.5194/hess-16-1203-2012.
Texto completo da fonteKuntjoro, Wedyanto, D. D. Wijaya, A. Pramansyah, Z. A. J. Tanuwijaya e Dhota Pradipta. "Zenith Wet Delay (ZWD) Seasonal Correlation with Rainfall in Cikapundung River Discharge, North Bandung Region, Indonesia". E3S Web of Conferences 94 (2019): 05004. http://dx.doi.org/10.1051/e3sconf/20199405004.
Texto completo da fonteCartwright, I., B. Gilfedder e H. Hofmann. "Contrasts between chemical and physical estimates of baseflow help discern multiple sources of water contributing to rivers". Hydrology and Earth System Sciences Discussions 10, n.º 5 (14 de maio de 2013): 5943–74. http://dx.doi.org/10.5194/hessd-10-5943-2013.
Texto completo da fonteLázaro, Mariano, David Lázaro, Edurne Cortabarria e Daniel Alvear. "Innovations for smoke management in passenger trains". Journal of Fire Sciences 38, n.º 2 (24 de dezembro de 2019): 194–211. http://dx.doi.org/10.1177/0734904119895775.
Texto completo da fonteDunne, Jarrod C., Greg Beresford e Brian L. N. Kennett. "Guidelines for building a detailed elastic depth model". GEOPHYSICS 65, n.º 1 (janeiro de 2000): 35–45. http://dx.doi.org/10.1190/1.1444723.
Texto completo da fonteMinh, Pham Thi, Bui Thi Tuyet, Tran Thi Thu Thao e Le Thi Thu Hang. "Application of ensemble Kalman filter in WRF model to forecast rainfall on monsoon onset period in South Vietnam". VIETNAM JOURNAL OF EARTH SCIENCES 40, n.º 4 (18 de setembro de 2018): 367–94. http://dx.doi.org/10.15625/0866-7187/40/4/13134.
Texto completo da fonte