Literatura científica selecionada sobre o tema "Flight recovery"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Flight recovery".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Flight recovery"
Gawron, Valerie J., e Jeff Peer. "Evaluation of Airplane Upset Recovery Training". Aviation Psychology and Applied Human Factors 4, n.º 2 (1 de julho de 2014): 74–85. http://dx.doi.org/10.1027/2192-0923/a000059.
Texto completo da fonteGee, C., e R. Robertson. "Recovery of the flight system following ablation of the tegulae in immature adult locusts". Journal of Experimental Biology 199, n.º 6 (1 de junho de 1996): 1395–403. http://dx.doi.org/10.1242/jeb.199.6.1395.
Texto completo da fonteWang, Nianyi, Huiling Wang, Shan Pei e Boyu Zhang. "A Data-Driven Heuristic Method for Irregular Flight Recovery". Mathematics 11, n.º 11 (4 de junho de 2023): 2577. http://dx.doi.org/10.3390/math11112577.
Texto completo da fonteShao, Quan, Mengxue Shao, Yunpeng Bin, Pei Zhu e Yan Zhou. "Flight Recovery Method of Regional Multiairport Based on Risk Control Model". Mathematical Problems in Engineering 2020 (29 de abril de 2020): 1–18. http://dx.doi.org/10.1155/2020/7105381.
Texto completo da fonteBeer, Jeremy, Bria Morse, Todd Dart, Samantha Adler e Paul Sherman. "Lingering Altitude Effects During Piloting and Navigation in a Synthetic Cockpit". Aerospace Medicine and Human Performance 94, n.º 3 (1 de março de 2023): 135–41. http://dx.doi.org/10.3357/amhp.6149.2023.
Texto completo da fonteWang, Jin, Peng Zhao, Zhe Zhang, Ting Yue, Hailiang Liu e Lixin Wang. "Aircraft Upset Recovery Strategy and Pilot Assistance System Based on Reinforcement Learning". Aerospace 11, n.º 1 (11 de janeiro de 2024): 70. http://dx.doi.org/10.3390/aerospace11010070.
Texto completo da fonteBratu, Stephane, e Cynthia Barnhart. "Flight operations recovery: New approaches considering passenger recovery". Journal of Scheduling 9, n.º 3 (junho de 2006): 279–98. http://dx.doi.org/10.1007/s10951-006-6781-0.
Texto completo da fonteBlue, Rebecca S., Sean C. Norton, Jennifer Law, James M. Pattarini, Erik L. Antonsen, Alejandro Garbino, Jonathan B. Clark e Matthew W. Turney. "Emergency Medical Support for a Manned Stratospheric Balloon Test Program". Prehospital and Disaster Medicine 29, n.º 5 (5 de setembro de 2014): 532–37. http://dx.doi.org/10.1017/s1049023x14000958.
Texto completo da fonteFernandez-Montesinos, Aznar M., G. Schram, H. B. Verbruggen e R. A. Vingerhoeds. "Enhancing Flight Safety: Recovery from Windshear". IFAC Proceedings Volumes 31, n.º 29 (outubro de 1998): 104–6. http://dx.doi.org/10.1016/s1474-6670(17)38371-4.
Texto completo da fontevon Kroge, S., EM Wölfel, LB Buravkova, DA Atiakshin, EA Markina, T. Schinke, T. Rolvien, B. Busse e K. Jähn-Rickert. "Bone loss recovery in mice following microgravity with concurrent bone-compartment-specific osteocyte characteristics". European Cells and Materials 42 (13 de outubro de 2021): 220–31. http://dx.doi.org/10.22203/ecm.v042a16.
Texto completo da fonteTeses / dissertações sobre o assunto "Flight recovery"
Lettovsky, Ladislav. "Airline operations recovery : an optimization approach". Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/24326.
Texto completo da fonteGee, Christine Elizabeth. "The capacity for functional recovery in the flight system of Locusta migratoria migratorioides". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/nq22458.pdf.
Texto completo da fonteWalsh, Allan R. "A computer model for in-flight black liquor combustion in a kraft recovery furnace". Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/7060.
Texto completo da fonteRafi, Melvin. "Response and recovery of an MRAC adaptive flight control system to adverse atmospheric encounters". Thesis, Wichita State University, 2013. http://hdl.handle.net/10057/10642.
Texto completo da fonteThesis (M.S.)--Wichita State University, College of Engineering, Dept. of Aerospace Engineering
Cunis, Torbjørn. "Modeling, analysis, and control for upset recovery : from system theory to unmanned aircraft flight". Thesis, Toulouse, ISAE, 2019. http://www.theses.fr/2019ESAE0027.
Texto completo da fonteUpset flight dynamics are characterised by unstable, highly nonlinear behaviourof the aircraft aerodynamic system. As upsets often lead to in-flight loss-of-control (LOC-I) accidents,it still poses a severe threat to today’s commercial aviation. Contributing to almost everysecond fatality in civil aviation while representing merely 10% of the total accidents (both fataland nonfatal), the International Air Transport Association has classified LOC-I as the “highestrisk to aviation safety”. Considerable effort has been undertaken in response by academics,manufacturers, commercial airlines, and authorities to predict and prevent LOC-I events as wellas recover from upset conditions into the nominal flight envelope. As result, researchers fromboth aeronautical engineering and system theory have made significant contributions towardsaviation safety; however, approaches from engineering and theory are rather disparate. This thesistherefore focuses on the application and transfer of system theoretical results to engineeringapplications.In particular, we have found simple polynomial models for aircraft dynamics, despite commonin the system theoretical literature, failing to represent full-envelope aerodynamics accurately.Advanced fitting methods such as multi-variate splines, on the other hand, are unsuitable forsome of the proposed functional analysis methods. Instead, a simple piecewise defined polynomialmodel proves to be accurate in fitting the aerodynamic coefficients for low and high angles ofattack. State-of-the-art bifurcation analysis and analysis based on sum-of-squares programmingtechniques are extended for this class of models and applied to a piecewise equations of motionof the Generic Transport Model (GTM). In the same spirit, we develop a model for a small,fixed-wing aircraft based on static continuous fluid dynamics (CFD) simulations. In the lackof dynamic coefficients from CFD, we identify a pitch-damping model comparing bifurcationanalysis and flight data that predicts well dynamics and stability of deep-stall flight.Previous developments in sum-of-squares programming have been promising for the certificationof nonlinear dynamics and flight control laws, yet their application in aeronauticalengineering halted. In combination with piecewise polynomial modeling, we are able to re-applythis technique for analysis in an accurate but computationally feasible manner to verify stablerecovery. Subsequently, we synthesise inherently stable linear and polynomial feedback laws fordeep-stall recovery. We further extend the estimation of regions of attraction for the piecewisepolynomial model towards an improved algorithm for local stability analysis of arbitrary switchingsystems, such as splines, thus making our work available for future analysis and certificationof highly accurate algebraic models.With highly nonlinear dynamics and critical state and input constraints challenging upsetrecovery, model-predictive control (MPC) with receding horizon is a powerful approach. MPCfurther provides a mature stability theory contributing towards the needs for flight control certification.Yet, for realistic control systems careful algebraic or semi-algebraic considerationsare necessary in order to rigorously prove closed-loop stability. Employing sum-of-squares programming,we provide a stability proof for a deep-stall recovery strategy minimising the loss ofaltitude during recovery. We further demonstrate MPC schemes for recovery from spiral andoscillatory spin upsets in an uncertain environment making use of the well-known and freelyavailable high-fidelity GTM desktop simulation.The results of this thesis are thus promising for future system theoretic approaches in modeling,analysis, and control of aircraft upset dynamics for the development and certification offlight control systems in order to prevent in-flight loss-of-control accidents
Rozenbeek, David, e Keyserlingk Erik von. "Recovery and Flight Data Recording System for Free Falling Units Ejected From Sounding Rocket". Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-214743.
Texto completo da fontePratt, Kevin S. "Analysis of VTOL MAV use during rescue and recovery operations following Hurricane Katrina". [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002209.
Texto completo da fonteVaaben, Bo, e Jesper Larsen. "Mitigation of airspace congestion impact on airline networks". Elsevier, 2015. https://publish.fid-move.qucosa.de/id/qucosa%3A72734.
Texto completo da fonteHallman, L. (Lauri). "Single photon detection based devices and techniques for pulsed time-of-flight applications". Doctoral thesis, Oulun yliopisto, 2015. http://urn.fi/urn:isbn:9789526210445.
Texto completo da fonteTiivistelmä Tässä työssä kehitettiin uudentyyppinen, tehostettua "gain-switchingiä" hyödyntävä laserdiodilähetin käytettäväksi yksittäisten fotonien avalanche-ilmaisimien (SPAD) kanssa, ja sitä testattiin pulssin lentoaikaan perustuvassa laseretäisyysmittaussovelluksessa. Useita laserdiodiversioita testattiin ja ohjauselektroniikkaa kehitettiin. Ohjauselektroniikan parannukset mahdollistivat jopa 1 MHz pulssitustaajuuden, kun taas laserin maksimiteho oli noin 5–40 W riippuen laserdiodin dimensioista. Suuri lähtöteho on edullinen varsinkin vahvoissa taustafotoniolosuhteissa ulkona. Laserpulssin pituus vastaa tyypillisen SPAD-ilmaisimen jitteriä tarjoten useita etuja. Uusi laserpulssitinrakenne mahdollistaa esimerkiksi kompaktin etäisyysmittarin 50 m mittausetäisyydelle ulkona aurinkoisessa olosuhteessa mm–cm -mittaustarkkuudella (σ-arvo) yli 10 kHz mittaustahdilla. Yksittäisten fotonien lentoaikamittaustekniikan osoitettiin myös mahdollistavan soodakattilan keon korkeuden mittauksen, jossa on voimakkaasti vaimentavaa ja dispersoivaa savukaasua. Lisäksi portitetun yksittäisten fotonien ilmaisutekniikan osoitettiin hylkäävän fluoresenssin synnyttämiä fotoneita Raman-spektroskoopissa, joka johtaa selvästi parempaan signaali-kohinasuhteeseen. Fotoni-ilmiöitä tutkittiin myös lineaarista valoilmaisinta hyödyntävän pulssin kulkuaikamittaukseen perustuvan lasertutkan tapauksessa. Osoitettiin, että signaalin fotonikohina vaikuttaa optimaaliseen ilmaisinkonfiguraatioon, ja että pulssin ilmaisujitteri voidaan minimoida sopivalla ajoitusdiskriminaattorilla
Nikolic, Mark I. "The human-machine teams create, explain, and recover from coordination breakdowns: a simulator study of disturbance management on modern flight decks". The Ohio State University, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=osu1092808745.
Texto completo da fonteLivros sobre o assunto "Flight recovery"
E, Hudlicka, e Langley Research Center, eds. Flight crew aiding for recovery from subsystem failures. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Encontre o texto completo da fonteUnited States. Dept. of the Air Force, ed. Civil engineer readiness flight response and recovery handbook. [Washington, D.C.?]: Dept. of the Air Force, 1997.
Encontre o texto completo da fonteBollendorf, Robert F. Flight of the loon: One family's battle with recovery. Glen Ellyn, IL: College of DuPage Press, 2008.
Encontre o texto completo da fonteBollendorf, Robert F. The flight of the loon: One family's battle with recovery. Chicago, Ill: ACTA Publications, 1992.
Encontre o texto completo da fonteHinton, David A. Piloted-simulation evaluation of recovery guidance for microburst wind shear encounters. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1989.
Encontre o texto completo da fonteHinton, David A. Piloted-simulation evaluation of recovery guidance for microburst wind shear encounters. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1989.
Encontre o texto completo da fonteHinton, David A. Piloted-simulation evaluation of recovery guidance for microburst wind shear encounters. Hampton, Va: Langley Research Center, 1989.
Encontre o texto completo da fonteHinton, David A. Piloted-simulation evaluation of recovery guidance for microburst wind shear encounters. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1989.
Encontre o texto completo da fonteSchaefer, Otto. Preliminary system design of a three arm capture mechanism (TACM) flight demonstration article. Huntsville, Ala: National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 1993.
Encontre o texto completo da fonteUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Program., SRI International e Langley Research Center, eds. Formal specification and verification of a fault-masking and transient-recovery model for digital flight-control systems. [Washington, D.C.?]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1991.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Flight recovery"
Pottmeyer, Felix, Viktor Dück e Natalia Kliewer. "Crew Recovery with Flight Retiming". In Operations Research Proceedings 2008, 295–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00142-0_48.
Texto completo da fonteWan, Yu-jie, Guo-qing Wang e Miao Wang. "Coupling Evaluation Model of Abnormal Flight Recovery Strategy". In 2023 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2023) Proceedings, 672–86. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-3998-1_57.
Texto completo da fonteHale, N. Wayne. "Flying the Shuttle: Operations from Preparation through Flight to Recovery". In Space Shuttle Legacy, 173–89. Reston, VA: American Institute of Aeronautics and Astronautics, Inc., 2013. http://dx.doi.org/10.2514/5.9781624102172.0173.0190.
Texto completo da fonteZhou, Tianwei, Pengcheng He, Churong Zhang, Yichen Lai, Huifen Zhong e Xusheng Wu. "An Improved Particle Swarm Optimization Algorithm for Irregular Flight Recovery Problem". In Lecture Notes in Computer Science, 190–200. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09677-8_17.
Texto completo da fonteWang, Zhurong, Feng Wang, Xinhong Hei e Haining Meng. "The Model of Flight Recovery Problem with Decision Factors and Its Optimization". In Intelligent Computing Theories and Application, 679–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95930-6_68.
Texto completo da fonteGao, Qiang, Xiaowei Tang e Jinfu Zhu. "Research on Greedy Simulated Annealing Algorithm for Irregular Flight Schedule Recovery Model". In Understanding Complex Systems, 503–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13938-3_44.
Texto completo da fonteLüdtke, Andreas, Jan-Patrick Osterloh, Tina Mioch, Frank Rister e Rosemarijn Looije. "Cognitive Modelling of Pilot Errors and Error Recovery in Flight Management Tasks". In Lecture Notes in Computer Science, 54–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11750-3_5.
Texto completo da fonteRushby, John. "A Fault-Masking and Transient-Recovery Model for Digital Flight-Control Systems". In Formal Techniques in Real-Time and Fault-Tolerant Systems, 109–36. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-3220-0_5.
Texto completo da fonteGan, Xiaobing, Tianwei Zhou, Yuhan Mai, Huifen Zhong, Xiuyun Zhang e Qinge Xiao. "An Improved Fireworks Algorithm for Integrated Flight Timetable and Crew Schedule Recovery Problem". In Lecture Notes in Computer Science, 329–38. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09677-8_28.
Texto completo da fonteZhou, Tianwei, Junrui Lu, Wenwen Zhang, Pengcheng He e Ben Niu. "Irregular Flight Timetable Recovery Under COVID-19: An Approach Based on Genetic Algorithm". In Data Mining and Big Data, 240–49. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7476-1_22.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Flight recovery"
HILL, STEVEN, e TODD MCCUSKER. "COMET Recovery System flight dynamics". In Flight Simulation and Technologies. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3693.
Texto completo da fonteMARTIN, C., e S. HILL. "Prediction of aircraft spin recovery". In 16th Atmospheric Flight Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-3363.
Texto completo da fonteLACKEY, J., B. MCNAMARA e M. STEVENS. "F/A-18 departure recovery improvement evaluation". In Flight Simulation and Technologies. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3671.
Texto completo da fonteGOUSMAN, K., R. LOSCHKE, R. ROONEY e J. JUANG. "Aircraft deep stall analysis and recovery". In 18th Atmospheric Flight Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-2888.
Texto completo da fonteMCCUSKER, TODD, e STEVEN HILL. "Landing dispersions for the Commercial Experiment Transporter Recovery System". In Flight Simulation and Technologies. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3695.
Texto completo da fonteFRENCH, K. "Flight test experience with an RPV emergency (parachute) recovery system". In 4th Flight Test Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-2139.
Texto completo da fonteKhrabrov, A., M. Sidoryuk e M. Goman. "Aerodynamic model development and simulation of airliner spin for upset recovery". In Progress in Flight Physics, editado por P. Reijasse, D. Knight, M. Ivanov e I. Lipatov. Les Ulis, France: EDP Sciences, 2013. http://dx.doi.org/10.1051/eucass/201305621.
Texto completo da fonteWilson, Charles B., Michael L. Anderson, Michael Hyde e Kent Jensen. "Optical Target Tracking with User Input for Automated RPA Recovery". In AIAA Atmospheric Flight Mechanics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-3709.
Texto completo da fonteXiuli, Zhao, e Guo Yanchi. "An improved GRASP for irregular flight recovery". In 2012 International Conference on System Science and Engineering (ICSSE). IEEE, 2012. http://dx.doi.org/10.1109/icsse.2012.6257229.
Texto completo da fonteTu, Zhan, Fan Fei, Matthew Eagon, Dongyan Xu e Xinyan Deng. "Flight Recovery of MAVs with Compromised IMU". In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019. http://dx.doi.org/10.1109/iros40897.2019.8968145.
Texto completo da fonteRelatórios de organizações sobre o assunto "Flight recovery"
Ferguson, S. T., e J. C. Bryant. Design and Testing of An Airborne Global Positioning System[gps] Navigation and Flight Path Recovery System. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/131486.
Texto completo da fonteTran, M., W. A. Nicholas, J. Chen, Z. Hong, J. Sohn, T. Whiteway, J. Pugh e C. Thun. Summary of analyses undertaken on debris recovered during the search for flight MH370: a collation of reports describing quarantine and parts analysis undertaken by Geoscience Australia. Geoscience Australia, 2017. http://dx.doi.org/10.11636/record.2017.011.
Texto completo da fonte