Artigos de revistas sobre o tema "Flexible supercapacitors"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Flexible supercapacitors".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Ren, Zhi Meng, Jian Yu Di, Zhen Kun Lei e Rui Mao. "Fabrication and Performance Test of Flexible Supercapacitors Based on Three-Dimensional Graphene Hydrogel". Materials Science Forum 1058 (5 de abril de 2022): 45–50. http://dx.doi.org/10.4028/p-3juu45.
Texto completo da fonteLi, Jing, Tongtong Xiao, Xiaoxi Yu e Mingyuan Wang. "Graphene-based composites for supercapacitors". Journal of Physics: Conference Series 2393, n.º 1 (1 de dezembro de 2022): 012005. http://dx.doi.org/10.1088/1742-6596/2393/1/012005.
Texto completo da fonteLee, Jung Bae, Jina Jang, Haoyu Zhou, Yoonjae Lee e Jung Bin In. "Densified Laser-Induced Graphene for Flexible Microsupercapacitors". Energies 13, n.º 24 (13 de dezembro de 2020): 6567. http://dx.doi.org/10.3390/en13246567.
Texto completo da fonteQin, Leiqiang, Jianxia Jiang, Quanzheng Tao, Chuanfei Wang, Ingemar Persson, Mats Fahlman, Per O. Å. Persson, Lintao Hou, Johanna Rosen e Fengling Zhang. "A flexible semitransparent photovoltaic supercapacitor based on water-processed MXene electrodes". Journal of Materials Chemistry A 8, n.º 11 (2020): 5467–75. http://dx.doi.org/10.1039/d0ta00687d.
Texto completo da fonteTadesse, Melkie Getnet, e Jörn Felix Lübben. "Review on Hydrogel-Based Flexible Supercapacitors for Wearable Applications". Gels 9, n.º 2 (26 de janeiro de 2023): 106. http://dx.doi.org/10.3390/gels9020106.
Texto completo da fontePour, Ghobad Behzadi, Hassan Ashourifar, Leila Fekri Aval e Shahram Solaymani. "CNTs-Supercapacitors: A Review of Electrode Nanocomposites Based on CNTs, Graphene, Metals, and Polymers". Symmetry 15, n.º 6 (1 de junho de 2023): 1179. http://dx.doi.org/10.3390/sym15061179.
Texto completo da fonteTadesse, Melkie Getnet, Esubalew Kasaw, Biruk Fentahun, Emil Loghin e Jörn Felix Lübben. "Banana Peel and Conductive Polymers-Based Flexible Supercapacitors for Energy Harvesting and Storage". Energies 15, n.º 7 (28 de março de 2022): 2471. http://dx.doi.org/10.3390/en15072471.
Texto completo da fonteShi, Shan, Chengjun Xu, Cheng Yang, Jia Li, Hongda Du, Baohua Li e Feiyu Kang. "Flexible supercapacitors". Particuology 11, n.º 4 (agosto de 2013): 371–77. http://dx.doi.org/10.1016/j.partic.2012.12.004.
Texto completo da fonteSembiring, Albert Willy Jonathan, e Afriyanti Sumboja. "Composite of graphene and in-situ polymerized polyaniline on carbon cloth substrate for flexible supercapacitor". Journal of Physics: Conference Series 2243, n.º 1 (1 de junho de 2022): 012105. http://dx.doi.org/10.1088/1742-6596/2243/1/012105.
Texto completo da fonteLu, Yang, Weixiao Wang, Yange Wang, Menglong Zhao, Jinru Lv, Yan Guo, Yingge Zhang, Rongjie Luo e Xianming Liu. "Ultralight supercapacitors utilizing waste cotton pads for wearable energy storage". Dalton Transactions 47, n.º 46 (2018): 16684–95. http://dx.doi.org/10.1039/c8dt03997f.
Texto completo da fonteKurra, Narendra, S. Kiruthika e Giridhar U. Kulkarni. "Solution processed sun baked electrode material for flexible supercapacitors". RSC Adv. 4, n.º 39 (2014): 20281–89. http://dx.doi.org/10.1039/c4ra02934h.
Texto completo da fonteDu, Yongquan, Peng Xiao, Jian Yuan e Jianwen Chen. "Research Progress of Graphene-Based Materials on Flexible Supercapacitors". Coatings 10, n.º 9 (18 de setembro de 2020): 892. http://dx.doi.org/10.3390/coatings10090892.
Texto completo da fonteVashishth, Ekta. "Biomass Derived Flexible Free-Standing Electrodes for a High Performance Supercapacitor". ECS Meeting Abstracts MA2023-02, n.º 1 (22 de dezembro de 2023): 21. http://dx.doi.org/10.1149/ma2023-02121mtgabs.
Texto completo da fonteQiu, Fulian, e David Harrison. "Multilayer supercapacitor threads for woven flexible circuits". Circuit World 41, n.º 4 (2 de novembro de 2015): 154–60. http://dx.doi.org/10.1108/cw-04-2015-0018.
Texto completo da fonteSeo, Wonbin, Dongwoo Kim, Shihyeong Kim e Habeom Lee. "Electrodeposition of the MnO2 on the Ag/Au Core–Shell Nanowire and Its Application to the Flexible Supercapacitor". Materials 14, n.º 14 (14 de julho de 2021): 3934. http://dx.doi.org/10.3390/ma14143934.
Texto completo da fonteLi, Li, Chen Chen, Jing Xie, Zehuai Shao e Fuxin Yang. "The Preparation of Carbon Nanotube/MnO2Composite Fiber and Its Application to Flexible Micro-Supercapacitor". Journal of Nanomaterials 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/821071.
Texto completo da fonteWang, Xiaonan, Peiquan Xu, Pengyu Zhang e Shuyue Ma. "Preparation of Electrode Materials Based on Carbon Cloth via Hydrothermal Method and Their Application in Supercapacitors". Materials 14, n.º 23 (24 de novembro de 2021): 7148. http://dx.doi.org/10.3390/ma14237148.
Texto completo da fonteYong, Sheng, Nicholas Hiller, Kai Yang e Stephen Beeby. "Integrated Flexible Textile Supercapacitor Fabricated in a Polyester-Cotton Fabric". Proceedings 32, n.º 1 (11 de dezembro de 2019): 15. http://dx.doi.org/10.3390/proceedings2019032015.
Texto completo da fonteAadil, Muhammad, Anmar Ghanim Taki, Sonia Zulfiqar, Abdur Rahman, Muhammad Shahid, Muhammad Farooq Warsi, Zubair Ahmad, Asma A. Alothman e Saikh Mohammad. "Gadolinium doped zinc ferrite nanoarchitecture reinforced with a carbonaceous matrix: a novel hybrid material for next-generation flexible capacitors". RSC Advances 13, n.º 40 (2023): 28063–75. http://dx.doi.org/10.1039/d3ra05290g.
Texto completo da fonteYong, Sheng, Stephen Beeby e Kai Yang. "Flexible Supercapacitor Fabricated on a Polyester-Cotton Textile". Proceedings 68, n.º 1 (11 de janeiro de 2021): 7. http://dx.doi.org/10.3390/proceedings2021068007.
Texto completo da fonteYong, Sheng, Stephen Beeby e Kai Yang. "Flexible Supercapacitor Fabricated on a Polyester-Cotton Textile". Proceedings 68, n.º 1 (11 de janeiro de 2021): 7. http://dx.doi.org/10.3390/proceedings2021068007.
Texto completo da fonteHui, Chi-yuen, Chi-wai Kan, Chee-leung Mak e Kam-hong Chau. "Flexible Energy Storage System—An Introductory Review of Textile-Based Flexible Supercapacitors". Processes 7, n.º 12 (4 de dezembro de 2019): 922. http://dx.doi.org/10.3390/pr7120922.
Texto completo da fonteChen, Qiao, Xinming Li, Xiaobei Zang, Yachang Cao, Yijia He, Peixu Li, Kunlin Wang, Jinquan Wei, Dehai Wu e Hongwei Zhu. "Effect of different gel electrolytes on graphene-based solid-state supercapacitors". RSC Adv. 4, n.º 68 (2014): 36253–56. http://dx.doi.org/10.1039/c4ra05553e.
Texto completo da fonteLiu, Ruixue, Wenkang Liu, Jichao Chen, Xiangli Bian, Kaiqi Fan, Junhong Zhao e Xiaojing Zhang. "Acrylate Copolymer-Reinforced Hydrogel Electrolyte for Strain Sensors and Flexible Supercapacitors". Batteries 9, n.º 6 (31 de maio de 2023): 304. http://dx.doi.org/10.3390/batteries9060304.
Texto completo da fonteSung, Joo-Hwan, Se-Joon Kim, Soo-Hwan Jeong, Eun-Ha Kim e Kun-Hong Lee. "Flexible micro-supercapacitors". Journal of Power Sources 162, n.º 2 (novembro de 2006): 1467–70. http://dx.doi.org/10.1016/j.jpowsour.2006.07.073.
Texto completo da fonteZhang, Jianfeng, Mujun Chen, Yunwang Ge e Qi Liu. "Manganese Oxide on Carbon Fabric for Flexible Supercapacitors". Journal of Nanomaterials 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/2870761.
Texto completo da fonteKumar, Prajwal, Eduardo Di Mauro, Shiming Zhang, Alessandro Pezzella, Francesca Soavi, Clara Santato e Fabio Cicoira. "Melanin-based flexible supercapacitors". Journal of Materials Chemistry C 4, n.º 40 (2016): 9516–25. http://dx.doi.org/10.1039/c6tc03739a.
Texto completo da fonteJavaid, A., KKC Ho, A. Bismarck, JHG Steinke, MSP Shaffer e ES Greenhalgh. "Improving the multifunctional behaviour of structural supercapacitors by incorporating chemically activated carbon fibres and mesoporous silica particles as reinforcement". Journal of Composite Materials 52, n.º 22 (14 de março de 2018): 3085–97. http://dx.doi.org/10.1177/0021998318761216.
Texto completo da fonteHao, Yu-Chuan, Nurzal Nurzal, Hung-Hua Chien, Chen-Yu Liao, Fei-Hong Kuok, Cheng-Chen Yang, Jian-Zhang Chen e Ing-Song Yu. "Application of Atmospheric-Pressure-Plasma-Jet Modified Flexible Graphite Sheets in Reduced-Graphene-Oxide/Polyaniline Supercapacitors". Polymers 12, n.º 6 (28 de maio de 2020): 1228. http://dx.doi.org/10.3390/polym12061228.
Texto completo da fonteDeepak, Nav, Arun Kumar, Shobha Shukla e Sumit Saxena. "Multi-Parameter Optimization of Siloxene-PANI Composites for High-Performance and Flexible Energy Storage Application". ECS Meeting Abstracts MA2023-02, n.º 1 (22 de dezembro de 2023): 9. http://dx.doi.org/10.1149/ma2023-0219mtgabs.
Texto completo da fonteHan, Yurim, Heebo Ha, Chunghyeon Choi, Hyungsub Yoon, Paolo Matteini, Jun Young Cheong e Byungil Hwang. "Review of Flexible Supercapacitors Using Carbon Nanotube-Based Electrodes". Applied Sciences 13, n.º 5 (4 de março de 2023): 3290. http://dx.doi.org/10.3390/app13053290.
Texto completo da fonteZheng, Bingna, Tieqi Huang, Liang Kou, Xiaoli Zhao, Karthikeyan Gopalsamy e Chao Gao. "Graphene fiber-based asymmetric micro-supercapacitors". J. Mater. Chem. A 2, n.º 25 (2014): 9736–43. http://dx.doi.org/10.1039/c4ta01868k.
Texto completo da fonteSagu, Jagdeep S., Nicola York, Darren Southee e K. G. U. Wijayantha. "Printed electrodes for flexible, light-weight solid-state supercapacitors – a feasibility study". Circuit World 41, n.º 2 (5 de maio de 2015): 80–86. http://dx.doi.org/10.1108/cw-01-2015-0004.
Texto completo da fonteJin, Guimei, Zhiyuan Duan, Zhiwei Dong e Qihang Zhou. "Solid-state supercapacitors based on different electrolytes: structural characteristics and comparative performance". Journal of Physics: Conference Series 2855, n.º 1 (1 de setembro de 2024): 012009. http://dx.doi.org/10.1088/1742-6596/2855/1/012009.
Texto completo da fonteShao, Yuanlong, Jianmin Li, Yaogang Li, Hongzhi Wang, Qinghong Zhang e Richard B. Kaner. "Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films". Mater. Horiz. 4, n.º 6 (2017): 1145–50. http://dx.doi.org/10.1039/c7mh00441a.
Texto completo da fonteDai, Shuge, Hengyu Guo, Mingjun Wang, Jianlin Liu, Guo Wang, Chenguo Hu e Yi Xi. "A Flexible micro-supercapacitor based on a pen ink-carbon fiber thread". J. Mater. Chem. A 2, n.º 46 (2014): 19665–69. http://dx.doi.org/10.1039/c4ta03442b.
Texto completo da fonteKim, Inkyum, Su Thiri San, Avinash C. Mendhe, Suprimkumar D. Dhas, Seung-Bae Jeon e Daewon Kim. "Rheological and Electrochemical Properties of Biodegradable Chia Mucilage Gel Electrolyte Applied to Supercapacitor". Batteries 9, n.º 10 (17 de outubro de 2023): 512. http://dx.doi.org/10.3390/batteries9100512.
Texto completo da fonteJang, Seohyeon, Jihyeon Kang, Soyul Kwak, Myeong-Lok Seol, M. Meyyappan e Inho Nam. "Methodologies for Fabricating Flexible Supercapacitors". Micromachines 12, n.º 2 (7 de fevereiro de 2021): 163. http://dx.doi.org/10.3390/mi12020163.
Texto completo da fonteMokrani, Zahra, Adel Oubelaid, Djamila Rekioua, Toufik Rekioua, Shwetank Avikal e Mohit Bajaj. "Enhanced Energy Management Strategy for Standalone Systems Integrating Fuel Cells, Batteries, and Supercapacitors". E3S Web of Conferences 564 (2024): 08001. http://dx.doi.org/10.1051/e3sconf/202456408001.
Texto completo da fonteHe, Qi, e Xiang Wu. "Ni3S2@NiMo-LDH Composite for Flexible Hybrid Capacitors". Batteries 10, n.º 7 (26 de junho de 2024): 230. http://dx.doi.org/10.3390/batteries10070230.
Texto completo da fonteForouzandeh, Parnia, Vignesh Kumaravel e Suresh C. Pillai. "Electrode Materials for Supercapacitors: A Review of Recent Advances". Catalysts 10, n.º 9 (26 de agosto de 2020): 969. http://dx.doi.org/10.3390/catal10090969.
Texto completo da fonteLi, Qi, Michael Horn, Yinong Wang, Jennifer MacLeod, Nunzio Motta e Jinzhang Liu. "A Review of Supercapacitors Based on Graphene and Redox-Active Organic Materials". Materials 12, n.º 5 (27 de fevereiro de 2019): 703. http://dx.doi.org/10.3390/ma12050703.
Texto completo da fonteRay, Apurba, Delale Korkut e Bilge Saruhan. "Efficient Flexible All-Solid Supercapacitors with Direct Sputter-Grown Needle-Like Mn/MnOx@Graphite-Foil Electrodes and PPC-Embedded Ionic Electrolytes". Nanomaterials 10, n.º 9 (7 de setembro de 2020): 1768. http://dx.doi.org/10.3390/nano10091768.
Texto completo da fonteZhang, Ye, e Rajesh Rajamani. "High-voltage thin-film supercapacitor with nano-structured electrodes and novel architecture". TECHNOLOGY 04, n.º 01 (março de 2016): 55–59. http://dx.doi.org/10.1142/s2339547816200016.
Texto completo da fonteMladenova, Borislava, Mariela Dimitrova e Antonia Stoyanova. "MnO2/AgNPs Composite as Flexible Electrode Material for Solid-State Hybrid Supercapacitor". Batteries 10, n.º 4 (5 de abril de 2024): 122. http://dx.doi.org/10.3390/batteries10040122.
Texto completo da fonteHu, Wenxin, Ruifang Xiang, Jiaxian Lin, Yu Cheng e Chunhong Lu. "Lignocellulosic Biomass-Derived Carbon Electrodes for Flexible Supercapacitors: An Overview". Materials 14, n.º 16 (14 de agosto de 2021): 4571. http://dx.doi.org/10.3390/ma14164571.
Texto completo da fonteLiu, Lianmei, Wei Weng, Jing Zhang, Xunliang Cheng, Ning Liu, Junjie Yang e Xin Ding. "Flexible supercapacitor with a record high areal specific capacitance based on a tuned porous fabric". Journal of Materials Chemistry A 4, n.º 33 (2016): 12981–86. http://dx.doi.org/10.1039/c6ta04911g.
Texto completo da fonteXun, Ni, Gao, Zhang, Gu e Huo. "Construction of Polymer Electrolyte Based on Soybean Protein Isolate and Hydroxyethyl Cellulose for a Flexible Solid-State Supercapacitor". Polymers 11, n.º 11 (17 de novembro de 2019): 1895. http://dx.doi.org/10.3390/polym11111895.
Texto completo da fonteNovakov, Christo, Radostina Kalinova, Svetlana Veleva, Filip Ublekov, Ivaylo Dimitrov e Antonia Stoyanova. "Flexible Polymer-Ionic Liquid Films for Supercapacitor Applications". Gels 9, n.º 4 (16 de abril de 2023): 338. http://dx.doi.org/10.3390/gels9040338.
Texto completo da fonteSimonenko, Tatiana L., Nikolay P. Simonenko, Philipp Yu Gorobtsov, Elizaveta P. Simonenko e Nikolay T. Kuznetsov. "Current Trends and Promising Electrode Materials in Micro-Supercapacitor Printing". Materials 16, n.º 18 (9 de setembro de 2023): 6133. http://dx.doi.org/10.3390/ma16186133.
Texto completo da fonte