Artigos de revistas sobre o tema "Flexible porous MOF"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Flexible porous MOF".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Zhang, Junxuan, Jie You, Qing Wei, Jeong-In Han e Zhiming Liu. "Hollow Porous CoO@Reduced Graphene Oxide Self-Supporting Flexible Membrane for High Performance Lithium-Ion Storage". Nanomaterials 13, n.º 13 (30 de junho de 2023): 1986. http://dx.doi.org/10.3390/nano13131986.
Texto completo da fonteSeth, Soana, Govardhan Savitha e Jarugu Narasimha Moorthy. "Diverse isostructural MOFs by postsynthetic metal node metathesis: anionic-to-cationic framework conversion, luminescence and separation of dyes". Journal of Materials Chemistry A 3, n.º 45 (2015): 22915–22. http://dx.doi.org/10.1039/c5ta04551g.
Texto completo da fonteLing, Yajing, Jingjing Jiao, Mingxing Zhang, Huimin Liu, Dongjie Bai, Yunlong Feng e Yabing He. "A porous lanthanide metal–organic framework based on a flexible cyclotriphosphazene-functionalized hexacarboxylate exhibiting selective gas adsorption". CrystEngComm 18, n.º 33 (2016): 6254–61. http://dx.doi.org/10.1039/c6ce00497k.
Texto completo da fonteMa, Qintian, Qingyuan Yang, Aziz Ghoufi, Ke Yang, Ming Lei, Gérard Férey, Chongli Zhong e Guillaume Maurin. "Guest-modulation of the mechanical properties of flexible porous metal–organic frameworks". J. Mater. Chem. A 2, n.º 25 (2014): 9691–98. http://dx.doi.org/10.1039/c4ta00622d.
Texto completo da fonteHou, Chaoyi, Yue-Ling Bai, XiaoLi Bao, Liangzhen Xu, Rong-Guang Lin, Shourong Zhu, Jianhui Fang e Jiaqiang Xu. "A metal–organic framework constructed using a flexible tripodal ligand and tetranuclear copper cluster for sensing small molecules". Dalton Transactions 44, n.º 17 (2015): 7770–73. http://dx.doi.org/10.1039/c5dt00762c.
Texto completo da fonteHaldar, Ritesh, e Christof Wöll. "Hierarchical assemblies of molecular frameworks—MOF-on-MOF epitaxial heterostructures". Nano Research 14, n.º 2 (20 de julho de 2020): 355–68. http://dx.doi.org/10.1007/s12274-020-2953-z.
Texto completo da fonteLi, Zhen, Jingting Bu, Chenying Zhang, Lingli Cheng, Dengyu Pan, Zhiwen Chen e Minghong Wu. "Electrospun carbon nanofibers embedded with MOF-derived N-doped porous carbon and ZnO quantum dots for asymmetric flexible supercapacitors". New Journal of Chemistry 45, n.º 24 (2021): 10672–82. http://dx.doi.org/10.1039/d1nj01369f.
Texto completo da fonteDeng, Mingli, Shijun Tai, Weiquan Zhang, Yongchen Wang, Jiaxing Zhu, Jinsheng Zhang, Yun Ling e Yaming Zhou. "A self-catenated rob-type porous coordination polymer constructed from triazolate and carboxylate ligands: fluorescence response to the reversible phase transformation". CrystEngComm 17, n.º 31 (2015): 6023–29. http://dx.doi.org/10.1039/c5ce00887e.
Texto completo da fonteLi, Zhen, Julio Fraile, Clara Viñas, Francesc Teixidor e José G. Planas. "Post-synthetic modification of a highly flexible 3D soft porous metal–organic framework by incorporating conducting polypyrrole: enhanced MOF stability and capacitance as an electrode material". Chemical Communications 57, n.º 20 (2021): 2523–26. http://dx.doi.org/10.1039/d0cc07393h.
Texto completo da fonteCao, Xiao-Man, Zhi-Jia Sun, Si-Yu Zhao, Bing Wang e Zheng-Bo Han. "MOF-derived sponge-like hierarchical porous carbon for flexible all-solid-state supercapacitors". Materials Chemistry Frontiers 2, n.º 9 (2018): 1692–99. http://dx.doi.org/10.1039/c8qm00284c.
Texto completo da fonteBenecke, Jannik, Alexander Fuß, Tobias A. Engesser, Norbert Stock e Helge Reinsch. "A Flexible and Porous Ferrocene‐Based Gallium MOF with MIL‐53 Architecture". European Journal of Inorganic Chemistry 2021, n.º 8 (9 de fevereiro de 2021): 713–19. http://dx.doi.org/10.1002/ejic.202001085.
Texto completo da fonteDerbe, Tessema, Taju Sani, Enyew Amare e Teketel Girma. "Mini Review on Synthesis, Characterization, and Application of Zeolite@MOF Composite". Advances in Materials Science and Engineering 2023 (11 de abril de 2023): 1–28. http://dx.doi.org/10.1155/2023/8760967.
Texto completo da fonteYin, Zheng. "Metal Doping Induced Formation and Dynamic Gas Sorption of a Highly Porous Mesoporous MetalOrganic Framework". Advance Research in Organic and Inorganic Chemistry (AROIC) 4, n.º 1 (26 de abril de 2023): 1–2. http://dx.doi.org/10.54026/aroic/1015.
Texto completo da fonteMa, Yanhong, e Xin Zhang. "Structure Tuning of Hafnium Metal–Organic Frameworks through a Mixed Solvent Approach". Crystals 12, n.º 6 (29 de maio de 2022): 785. http://dx.doi.org/10.3390/cryst12060785.
Texto completo da fonteCui, Xiaolei, Guodong Kong, Yang Feng, Longting Li, Weidong Fan, Jia Pang, Lili Fan et al. "Interfacial polymerization of MOF “monomers” to fabricate flexible and thin membranes for molecular separation with ultrafast water transport". Journal of Materials Chemistry A 9, n.º 32 (2021): 17528–37. http://dx.doi.org/10.1039/d1ta04049a.
Texto completo da fonteLi, Jiaxin, Yachao Yan, Yingzhi Chen, Qinglin Fang, Muhammad Irfan Hussain e Lu-Ning Wang. "Flexible Curcumin-Loaded Zn-MOF Hydrogel for Long-Term Drug Release and Antibacterial Activities". International Journal of Molecular Sciences 24, n.º 14 (14 de julho de 2023): 11439. http://dx.doi.org/10.3390/ijms241411439.
Texto completo da fonteMahadi, Nurfatihah, Halina Misran e S. Z. Othman. "Synthesis and Characterizations of MOF-199 Using PODFA as Porogen for CO2 Adsorption Applications". Key Engineering Materials 694 (maio de 2016): 44–49. http://dx.doi.org/10.4028/www.scientific.net/kem.694.44.
Texto completo da fonteHU, ZHIGANG, e DAN ZHAO. "POLYMERIZATION WITHIN CONFINED NANOCHANNELS OF POROUS METAL-ORGANIC FRAMEWORKS". Journal of Molecular and Engineering Materials 01, n.º 02 (junho de 2013): 1330001. http://dx.doi.org/10.1142/s2251237313300015.
Texto completo da fontePettinari, Claudio, e Alessia Tombesi. "MOFs for Electrochemical Energy Conversion and Storage". Inorganics 11, n.º 2 (30 de janeiro de 2023): 65. http://dx.doi.org/10.3390/inorganics11020065.
Texto completo da fonteChalati, T., P. Horcajada, R. Gref, P. Couvreur e C. Serre. "Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A". J. Mater. Chem. 21, n.º 7 (2011): 2220–27. http://dx.doi.org/10.1039/c0jm03563g.
Texto completo da fonteWang, Lin, Wei-Wei He, Zhao-Quan Yao e Tong-Liang Hu. "A Flexible Porous MOF Exhibiting Reversible Breathing Behavior through Single-Crystal to Single-Crystal Transformation". ChemistrySelect 2, n.º 1 (9 de janeiro de 2017): 283–87. http://dx.doi.org/10.1002/slct.201601666.
Texto completo da fonteSafdar Ali, Rashda, Hongmin Meng e Zhaohui Li. "Zinc-Based Metal-Organic Frameworks in Drug Delivery, Cell Imaging, and Sensing". Molecules 27, n.º 1 (24 de dezembro de 2021): 100. http://dx.doi.org/10.3390/molecules27010100.
Texto completo da fonteChaturvedi, Garima, Rishabh Jaiswal, S. A. Ilangovan, S. Sujatha, K. S. Ajeesh e Sankara Sarma V. Tatiparti. "Ni-MOF Based Flexible Solid-State Supercapacitors in Aqueous and Non-Aqueous Electrolytes". ECS Meeting Abstracts MA2023-02, n.º 1 (22 de dezembro de 2023): 13. http://dx.doi.org/10.1149/ma2023-02113mtgabs.
Texto completo da fonteWen, Lili, Dong’e Wang, Chenggang Wang, Feng Wang, Dongfeng Li e Kejian Deng. "A 3D porous zinc MOF constructed from a flexible tripodal ligand: Synthesis, structure, and photoluminescence property". Journal of Solid State Chemistry 182, n.º 3 (março de 2009): 574–79. http://dx.doi.org/10.1016/j.jssc.2008.11.031.
Texto completo da fonteHess, Samuel C., Robert N. Grass e Wendelin J. Stark. "MOF Channels within Porous Polymer Film: Flexible, Self-Supporting ZIF-8 Poly(ether sulfone) Composite Membrane". Chemistry of Materials 28, n.º 21 (20 de outubro de 2016): 7638–44. http://dx.doi.org/10.1021/acs.chemmater.6b02499.
Texto completo da fonteAshour, Radwa M., Ahmed F. Abdel-Magied, Qiong Wu, Richard T. Olsson e Kerstin Forsberg. "Green Synthesis of Metal-Organic Framework Bacterial Cellulose Nanocomposites for Separation Applications". Polymers 12, n.º 5 (13 de maio de 2020): 1104. http://dx.doi.org/10.3390/polym12051104.
Texto completo da fonteHe, Xiang. "Adjusting the Catalytic Performance of MIL-88B(Fe/Co) through Structural Transitions". ECS Meeting Abstracts MA2024-01, n.º 35 (9 de agosto de 2024): 1945. http://dx.doi.org/10.1149/ma2024-01351945mtgabs.
Texto completo da fonteCoudert, Francois-Xavier. "Assessing and predicting flexibility in MOFs with molecular simulation". Acta Crystallographica Section A Foundations and Advances 70, a1 (5 de agosto de 2014): C1125. http://dx.doi.org/10.1107/s2053273314088743.
Texto completo da fonteLi, Longxiao, Yufei Han, Yuzhe Zhang, Weijia Wu, Wei Du, Guojun Wen e Siyi Cheng. "Laser-Induced Graphene Decorated with MOF-Derived NiCo-LDH for Highly Sensitive Non-Enzymatic Glucose Sensor". Molecules 29, n.º 23 (29 de novembro de 2024): 5662. https://doi.org/10.3390/molecules29235662.
Texto completo da fonteZhu, Rongyue, Mengru Cai, Tingting Fu, Dongge Yin, Hulinyue Peng, Shilang Liao, Yuji Du, Jiahui Kong, Jian Ni e Xingbin Yin. "Fe-Based Metal Organic Frameworks (Fe-MOFs) for Bio-Related Applications". Pharmaceutics 15, n.º 6 (26 de maio de 2023): 1599. http://dx.doi.org/10.3390/pharmaceutics15061599.
Texto completo da fonteWon, Eun-Seo, e Jong-Won Lee. "Biphasic Solid Electrolytes with Homogeneous Li-Ion Transport Pathway Enabled By Metal-Organic Frameworks". ECS Meeting Abstracts MA2022-01, n.º 55 (7 de julho de 2022): 2248. http://dx.doi.org/10.1149/ma2022-01552248mtgabs.
Texto completo da fonteWang, Xiao, Yanan Wang, Yali Liu, Xiyue Cao, Feifei Zhang, Jianfei Xia e Zonghua Wang. "MOF-derived porous carbon nanozyme-based flexible electrochemical sensing system for in situ and real-time monitoring of H2O2 released from cells". Talanta 266 (janeiro de 2024): 125132. http://dx.doi.org/10.1016/j.talanta.2023.125132.
Texto completo da fonteWang, Xin, Guo-Dong Han e Juan Wang. "Polypyrrole Coated Al-TDC Composite Structure as Lithium-Sulfur Batteries Cathode". Nano 16, n.º 06 (20 de maio de 2021): 2150060. http://dx.doi.org/10.1142/s1793292021500600.
Texto completo da fonteBasu, Aniruddha, Kingshuk Roy, Neha Sharma, Shyamapada Nandi, Ramanathan Vaidhyanathan, Sunit Rane, Chandrashekhar Rode e Satishchandra Ogale. "CO2 Laser Direct Written MOF-Based Metal-Decorated and Heteroatom-Doped Porous Graphene for Flexible All-Solid-State Microsupercapacitor with Extremely High Cycling Stability". ACS Applied Materials & Interfaces 8, n.º 46 (11 de novembro de 2016): 31841–48. http://dx.doi.org/10.1021/acsami.6b10193.
Texto completo da fonteJaved, Muhammad Sufyan, Nusrat Shaheen, Shahid Hussain, Jinliang Li, Syed Shoaib Ahmad Shah, Yasir Abbas, Muhammad Ashfaq Ahmad, Rizwan Raza e Wenjie Mai. "An ultra-high energy density flexible asymmetric supercapacitor based on hierarchical fabric decorated with 2D bimetallic oxide nanosheets and MOF-derived porous carbon polyhedra". Journal of Materials Chemistry A 7, n.º 3 (2019): 946–57. http://dx.doi.org/10.1039/c8ta08816k.
Texto completo da fonteMohan, Gopalakrishnan, e Soorathep Kheawhom. "3D MOF Derived Porous Nanorods like Cation Defect-Rich Ni0.6Fe2.4O4@NC Efficient Electrocatalyst Enables Robust Rechargeable Zinc-Air Batteries". ECS Meeting Abstracts MA2024-02, n.º 9 (22 de novembro de 2024): 1423. https://doi.org/10.1149/ma2024-0291423mtgabs.
Texto completo da fonteHou, Xinyu, Lijian Sun, Ying Hu, Xianhui An e Xueren Qian. "De-Doped Polyaniline as a Mediating Layer Promoting In-Situ Growth of Metal–Organic Frameworks on Cellulose Fiber and Enhancing Adsorptive-Photocatalytic Removal of Ciprofloxacin". Polymers 13, n.º 19 (27 de setembro de 2021): 3298. http://dx.doi.org/10.3390/polym13193298.
Texto completo da fonteSousa, Antonio C. M., e Fangming Jiang. "SPH as an Inverse Numerical Tool for the Prediction of Diffusive Properties in Porous Media". Materials Science Forum 553 (agosto de 2007): 171–89. http://dx.doi.org/10.4028/www.scientific.net/msf.553.171.
Texto completo da fonteLin, Yung Jen, e Shin Yi Shen. "Fabrication of Alumina and Silicon Carbide Fibers from Carbon Fibers". Materials Science Forum 561-565 (outubro de 2007): 603–6. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.603.
Texto completo da fonteLiu, Ming Jun, Wei Xia, Zhao Yao Zhou, Pu Qing Chen, Jun Jun Wang e Yuan Yuan Li. "Mechanical Models and Numerical Simulation of Rolling Compaction for Metal Powders". Materials Science Forum 532-533 (dezembro de 2006): 817–20. http://dx.doi.org/10.4028/www.scientific.net/msf.532-533.817.
Texto completo da fonteJafari, Reza, Marc Chameau, Masoud Farzaneh e Gelareh Momen. "Superhydrophobic and Highly Oleophilic Polystyrene Fibers (PS) with Delayed Freezing Time and Effective Oil Adsorption". Materials Science Forum 941 (dezembro de 2018): 2232–36. http://dx.doi.org/10.4028/www.scientific.net/msf.941.2232.
Texto completo da fonteGuglielmi, P. O., G. F. Nunes, M. Hablitzel, Dachamir Hotza e Rolf Janssen. "Production of Oxide Ceramic Matrix Composites by a Prepreg Technique". Materials Science Forum 727-728 (agosto de 2012): 556–61. http://dx.doi.org/10.4028/www.scientific.net/msf.727-728.556.
Texto completo da fonteHui, Siyue, Huanzhi Zhang, Guangpeng Xu, Junhao Zhang, Fen Xu, Lixian Sun, Xiangcheng Lin et al. "Hierarchically porous and flexible BN/Co-MOF aerogel encapsulated paraffin for efficient dual-thermal insulation". Journal of Materials Chemistry A, 2025. https://doi.org/10.1039/d4ta07235a.
Texto completo da fonteCai, Dongming, Zhuxian Yang, Rui Tong, Haiming Huang, Chuankun Zhang e Yongde Xia. "Binder‐Free MOF‐Based and MOF‐Derived Nanoarrays for Flexible Electrochemical Energy Storage: Progress and Perspectives". Small, 10 de novembro de 2023. http://dx.doi.org/10.1002/smll.202305778.
Texto completo da fonteKoutsianos, Athanasios, Roman Pallach, Louis Frentzel-Beyme, Chinmoy Das, Michael Paulus, Christian Sternemann e Sebastian Henke. "Breathing porous liquids based on responsive metal-organic framework particles". Nature Communications 14, n.º 1 (14 de julho de 2023). http://dx.doi.org/10.1038/s41467-023-39887-3.
Texto completo da fonteZhou, Xingliao, Xiaoliang Chen, Bo Yang, Sihai Luo, Meiling Guo, Ningli An, Hongmiao Tian, Xiangming Li e Jinyou Shao. "Advancements in Functionalizable Metal‐Organic Frameworks for Flexible Sensing Electronics". Advanced Functional Materials, 11 de março de 2025. https://doi.org/10.1002/adfm.202501683.
Texto completo da fonteZhang, Lingyue, Ruiying Li, Shuang Zheng, Hai Zhu, Moyuan Cao, Mingchun Li, Yaowen Hu, Li Long, Haopeng Feng e Chuyang Y. Tang. "Hydrogel-embedded vertically aligned metal-organic framework nanosheet membrane for efficient water harvesting". Nature Communications 15, n.º 1 (11 de novembro de 2024). http://dx.doi.org/10.1038/s41467-024-54215-z.
Texto completo da fonteSHARMA, VIVEK, VINOD KUMAR VASHISTHA e DIPAK KUMAR DAS. "MOFs-DERIVED METAL OXIDES FOR FLEXIBLE SUPERCAPACITORS". Surface Review and Letters, 4 de março de 2022. http://dx.doi.org/10.1142/s0218625x22300064.
Texto completo da fonteZhang, Qin, Shanjia Pan, Zhipeng Wang, Yanqin Yang e Songzhan Li. "MOF-derived porous Ni3S4/CoS nanosheet arrays for flexible supercapacitor electrode". Ionics, 1 de novembro de 2023. http://dx.doi.org/10.1007/s11581-023-05267-6.
Texto completo da fontePotdar, Aparna, Soumava Biswas, Dev Kumar Thapa, Bharat Bhanudas Kale, Milind V. Kulkarni e Murthy Chavali. "Flexible PVDF‐HFP, Nickel MOF‐based Hybrid Membrane as an Efficient Electrolyte for Lithium‐Ion Batteries". European Journal of Inorganic Chemistry, 12 de março de 2025. https://doi.org/10.1002/ejic.202500075.
Texto completo da fonte