Artigos de revistas sobre o tema "Flexible mechanical metamaterials"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Flexible mechanical metamaterials".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Zheng, Xiaoyang, Koichiro Uto, Wei-Hsun Hu, Ta-Te Chen, Masanobu Naito e Ikumu Watanabe. "Reprogrammable flexible mechanical metamaterials". Applied Materials Today 29 (dezembro de 2022): 101662. http://dx.doi.org/10.1016/j.apmt.2022.101662.
Texto completo da fonteYasuda, Hiromi, Hang Shu, Weijian Jiao, Vincent Tournat e Jordan Raney. "Collisions of nonlinear waves in flexible mechanical metamaterials". Journal of the Acoustical Society of America 151, n.º 4 (abril de 2022): A41. http://dx.doi.org/10.1121/10.0010592.
Texto completo da fonteZhai, Zirui, Yong Wang e Hanqing Jiang. "Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness". Proceedings of the National Academy of Sciences 115, n.º 9 (12 de fevereiro de 2018): 2032–37. http://dx.doi.org/10.1073/pnas.1720171115.
Texto completo da fonteJin, Eunji, In Seong Lee, Dongwook Kim, Hosoowi Lee, Woo-Dong Jang, Myung Soo Lah, Seung Kyu Min e Wonyoung Choe. "Metal-organic framework based on hinged cube tessellation as transformable mechanical metamaterial". Science Advances 5, n.º 5 (maio de 2019): eaav4119. http://dx.doi.org/10.1126/sciadv.aav4119.
Texto completo da fonteZhang, Zhan, Christopher Brandt, Jean Jouve, Yue Wang, Tian Chen, Mark Pauly e Julian Panetta. "Computational Design of Flexible Planar Microstructures". ACM Transactions on Graphics 42, n.º 6 (5 de dezembro de 2023): 1–16. http://dx.doi.org/10.1145/3618396.
Texto completo da fonteDeng, B., J. R. Raney, K. Bertoldi e V. Tournat. "Nonlinear waves in flexible mechanical metamaterials". Journal of Applied Physics 130, n.º 4 (28 de julho de 2021): 040901. http://dx.doi.org/10.1063/5.0050271.
Texto completo da fonteDykstra, David M. J., Shahram Janbaz e Corentin Coulais. "The extreme mechanics of viscoelastic metamaterials". APL Materials 10, n.º 8 (1 de agosto de 2022): 080702. http://dx.doi.org/10.1063/5.0094224.
Texto completo da fonteRafsanjani, Ahmad, Katia Bertoldi e André R. Studart. "Programming soft robots with flexible mechanical metamaterials". Science Robotics 4, n.º 29 (10 de abril de 2019): eaav7874. http://dx.doi.org/10.1126/scirobotics.aav7874.
Texto completo da fonteSlobozhanyuk, Alexey P., Mikhail Lapine, David A. Powell, Ilya V. Shadrivov, Yuri S. Kivshar, Ross C. McPhedran e Pavel A. Belov. "Flexible Helices for Nonlinear Metamaterials". Advanced Materials 25, n.º 25 (21 de maio de 2013): 3409–12. http://dx.doi.org/10.1002/adma.201300840.
Texto completo da fonteWu, Lingling, Bo Li e Ji Zhou. "Enhanced thermal expansion by micro-displacement amplifying mechanical metamaterial". MRS Advances 3, n.º 8-9 (2018): 405–10. http://dx.doi.org/10.1557/adv.2018.217.
Texto completo da fonteZhou, Xiang, Shixi Zang e Zhong You. "Origami mechanical metamaterials based on the Miura-derivative fold patterns". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, n.º 2191 (julho de 2016): 20160361. http://dx.doi.org/10.1098/rspa.2016.0361.
Texto completo da fonteDemiquel, A., V. Achilleos, G. Theocharis e V. Tournat. "Envelope vector solitons in nonlinear flexible mechanical metamaterials". Wave Motion 131 (dezembro de 2024): 103394. http://dx.doi.org/10.1016/j.wavemoti.2024.103394.
Texto completo da fonteXue, Chenhao, Nan Li, Shenggui Chen, Jiahua Liang e Wurikaixi Aiyiti. "The Laser Selective Sintering Controlled Forming of Flexible TPMS Structures". Materials 16, n.º 24 (8 de dezembro de 2023): 7565. http://dx.doi.org/10.3390/ma16247565.
Texto completo da fonteTiwari, Ashish. "Future Directions and Research Gaps in Enhancing the Optical Properties of PMMA with Metamaterials". International Journal of Multidisciplinary Research in Science, Engineering and Technology 2, n.º 12 (25 de novembro de 2023): 2303–9. http://dx.doi.org/10.15680/ijmrset.2019.0212013.
Texto completo da fontePagliocca, Nicholas, Kazi Zahir Uddin, Ibnaj Anamika Anni, Chen Shen, George Youssef e Behrad Koohbor. "Flexible planar metamaterials with tunable Poisson’s ratios". Materials & Design 215 (março de 2022): 110446. http://dx.doi.org/10.1016/j.matdes.2022.110446.
Texto completo da fonteMazur, Ekaterina, e Igor Shishkovsky. "Additively Manufactured Hierarchical Auxetic Mechanical Metamaterials". Materials 15, n.º 16 (15 de agosto de 2022): 5600. http://dx.doi.org/10.3390/ma15165600.
Texto completo da fonteTiwari, Ashish. "Enhancing the Optical Properties of PMMA with Metamaterials: Applications and Performance Analysis". International Journal of Multidisciplinary Research in Science, Engineering and Technology 3, n.º 12 (25 de novembro de 2023): 1342–49. http://dx.doi.org/10.15680/ijmrset.2020.0312019.
Texto completo da fonteHu, Fuwen, e Tian Li. "An Origami Flexiball-Inspired Metamaterial Actuator and Its In-Pipe Robot Prototype". Actuators 10, n.º 4 (26 de março de 2021): 67. http://dx.doi.org/10.3390/act10040067.
Texto completo da fonteLiang, Xudong, e Alfred J. Crosby. "Uniaxial stretching mechanics of cellular flexible metamaterials". Extreme Mechanics Letters 35 (fevereiro de 2020): 100637. http://dx.doi.org/10.1016/j.eml.2020.100637.
Texto completo da fonteDeng, Bolei, Siqin Yu, Antonio E. Forte, Vincent Tournat e Katia Bertoldi. "Characterization, stability, and application of domain walls in flexible mechanical metamaterials". Proceedings of the National Academy of Sciences 117, n.º 49 (20 de novembro de 2020): 31002–9. http://dx.doi.org/10.1073/pnas.2015847117.
Texto completo da fonteZhou, Shengru, Chao Liang, Ziqi Mei, Rongbo Xie, Zhenci Sun, Ji Li, Wenqiang Zhang, Yong Ruan e Xiaoguang Zhao. "Design and Implementation of a Flexible Electromagnetic Actuator for Tunable Terahertz Metamaterials". Micromachines 15, n.º 2 (31 de janeiro de 2024): 219. http://dx.doi.org/10.3390/mi15020219.
Texto completo da fonteHu, Songtao, Xiaobao Cao, Tom Reddyhoff, Debashis Puhan, Sorin-Cristian Vladescu, Jing Wang, Xi Shi, Zhike Peng, Andrew J. deMello e Daniele Dini. "Liquid repellency enhancement through flexible microstructures". Science Advances 6, n.º 32 (agosto de 2020): eaba9721. http://dx.doi.org/10.1126/sciadv.aba9721.
Texto completo da fonteSekiguchi, Ten, Hidetaka Ueno, Vivek Anand Menon, Ryo Ichige, Yuya Tanaka, Hiroshi Toshiyoshi e Takaaki Suzuki. "UV-curable Polydimethylsiloxane Photolithography and Its Application to Flexible Mechanical Metamaterials". Sensors and Materials 35, n.º 6 (27 de junho de 2023): 1995. http://dx.doi.org/10.18494/sam4351.
Texto completo da fonteLi, Nan, Chenhao Xue, Shenggui Chen, Wurikaixi Aiyiti, Sadaf Bashir Khan, Jiahua Liang, Jianping Zhou e Bingheng Lu. "3D Printing of Flexible Mechanical Metamaterials: Synergistic Design of Process and Geometric Parameters". Polymers 15, n.º 23 (24 de novembro de 2023): 4523. http://dx.doi.org/10.3390/polym15234523.
Texto completo da fonteDunne, Jai. "Chainmail inspired metamaterials for use in protective sports equipment". Graduate Journal of Sports Science, Coaching, Management, & Rehabilitation 1, n.º 3 (7 de junho de 2024): 36. http://dx.doi.org/10.19164/gjsscmr.v1i3.1509.
Texto completo da fonteLuo, Sisi, Jianjiao Hao, Fuju Ye, Jiaxin Li, Ying Ruan, Haoyang Cui, Wenjun Liu e Lei Chen. "Evolution of the Electromagnetic Manipulation: From Tunable to Programmable and Intelligent Metasurfaces". Micromachines 12, n.º 8 (20 de agosto de 2021): 988. http://dx.doi.org/10.3390/mi12080988.
Texto completo da fonteLi, Jian, Yi Yuan, Jiao Wang, Ronghao Bao e Weiqiu Chen. "Propagation of nonlinear waves in graded flexible metamaterials". International Journal of Impact Engineering 156 (outubro de 2021): 103924. http://dx.doi.org/10.1016/j.ijimpeng.2021.103924.
Texto completo da fonteBar-Sinai, Yohai, Gabriele Librandi, Katia Bertoldi e Michael Moshe. "Geometric charges and nonlinear elasticity of two-dimensional elastic metamaterials". Proceedings of the National Academy of Sciences 117, n.º 19 (29 de abril de 2020): 10195–202. http://dx.doi.org/10.1073/pnas.1920237117.
Texto completo da fonteChen, Xing, Li Cai e Jihong Wen. "Extreme mechanical metamaterials with independently adjustable elastic modulus and mass density". Applied Physics Express 15, n.º 4 (8 de março de 2022): 047001. http://dx.doi.org/10.35848/1882-0786/ac5872.
Texto completo da fonteFilipov, Evgueni T., Tomohiro Tachi e Glaucio H. Paulino. "Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials". Proceedings of the National Academy of Sciences 112, n.º 40 (8 de setembro de 2015): 12321–26. http://dx.doi.org/10.1073/pnas.1509465112.
Texto completo da fonteSaoud, Ahmad, Diogo Queiros-Conde, Ahmad Omar e Thomas Michelitsch. "Intelligent Anti-Seismic Foundation: The Role of Fractal Geometry". Buildings 13, n.º 8 (25 de julho de 2023): 1891. http://dx.doi.org/10.3390/buildings13081891.
Texto completo da fonteWang, Zhigang, Qi Wu, Yifei Lu, Panpan Bao, Yu Yang, Daochun Li, Xiasheng Sun e Jinwu Xiang. "Design of a Distributedly Active Morphing Wing Based on Digital Metamaterials". Aerospace 9, n.º 12 (27 de novembro de 2022): 762. http://dx.doi.org/10.3390/aerospace9120762.
Texto completo da fonteLi, Jian, Ronghao Bao e Weiqiu Chen. "Exploring static responses, mode transitions, and feasible tunability of Kagome-based flexible mechanical metamaterials". Journal of the Mechanics and Physics of Solids 186 (maio de 2024): 105599. http://dx.doi.org/10.1016/j.jmps.2024.105599.
Texto completo da fonteEffah, Elijah, Ezekiel Edward Nettey-Oppong, Ahmed Ali, Kyung Min Byun e Seung Ho Choi. "Tunable Metasurfaces Based on Mechanically Deformable Polymeric Substrates". Photonics 10, n.º 2 (23 de janeiro de 2023): 119. http://dx.doi.org/10.3390/photonics10020119.
Texto completo da fonteZhuang, Shulei, Xinyu Li, Tong Yang, Lu Sun, Olga Kosareva, Cheng Gong e Weiwei Liu. "Graphene-Based Absorption–Transmission Multi-Functional Tunable THz Metamaterials". Micromachines 13, n.º 8 (1 de agosto de 2022): 1239. http://dx.doi.org/10.3390/mi13081239.
Texto completo da fonteSong, Yihao, e Yanfeng Shen. "Highly morphing and reconfigurable fluid–solid interactive metamaterials for tunable ultrasonic guided wave control". Applied Physics Letters 121, n.º 26 (26 de dezembro de 2022): 264102. http://dx.doi.org/10.1063/5.0117634.
Texto completo da fonteFeng, Xiaobin, Ke Cao, Xiege Huang, Guodong Li e Yang Lu. "Nanolayered CoCrFeNi/Graphene Composites with High Strength and Crack Resistance". Nanomaterials 12, n.º 12 (20 de junho de 2022): 2113. http://dx.doi.org/10.3390/nano12122113.
Texto completo da fonteKim, Jang Hwan, Su Eon Lee e Bong Hoon Kim. "Applications of flexible and stretchable three-dimensional structures for soft electronics". Soft Science 3, n.º 2 (2023): 16. http://dx.doi.org/10.20517/ss.2023.07.
Texto completo da fonteYu, Junmin, Can Nerse, Kyoung-jin Chang e Semyung Wang. "A framework of flexible locally resonant metamaterials for attachment to curved structures". International Journal of Mechanical Sciences 204 (agosto de 2021): 106533. http://dx.doi.org/10.1016/j.ijmecsci.2021.106533.
Texto completo da fonteYu, Tianyu, Feilong Zhu, Xiongqi Peng e Zixuan Chen. "Acetylated Nanocelluloses Reinforced Shape Memory Epoxy with Enhanced Mechanical Properties and Outstanding Shape Memory Effect". Nanomaterials 12, n.º 23 (22 de novembro de 2022): 4129. http://dx.doi.org/10.3390/nano12234129.
Texto completo da fonteHu, Jiaming, Junyi Wang, Yu Xie, Chenzhi Shi e Yun Chen. "Finite Element Analysis on Acoustic and Mechanical Performance of Flexible Perforated Honeycomb-Corrugation Hybrid Sandwich Panel". Shock and Vibration 2021 (16 de maio de 2021): 1–14. http://dx.doi.org/10.1155/2021/9977644.
Texto completo da fonteTzarouchis, Dimitrios C., Maria Koutsoupidou, Ioannis Sotiriou, Konstantinos Dovelos, Dionysios Rompolas e Panagiotis Kosmas. "Electromagnetic metamaterials for biomedical applications: short review and trends". EPJ Applied Metamaterials 11 (2024): 7. http://dx.doi.org/10.1051/epjam/2024006.
Texto completo da fonteJung, Junbo, Siwon Yoon, Bumjoo Kim e Joong Bae Kim. "Development of High-Performance Flexible Radiative Cooling Film Using PDMS/TiO2 Microparticles". Micromachines 14, n.º 12 (10 de dezembro de 2023): 2223. http://dx.doi.org/10.3390/mi14122223.
Texto completo da fonteHuang, Xin, Wei Guo, Shaoyu Liu, Yangyang Li, Yuqi Qiu, Han Fang, Ganguang Yang et al. "Flexible Mechanical Metamaterials Enabled Electronic Skin for Real‐Time Detection of Unstable Grasping in Robotic Manipulation (Adv. Funct. Mater. 23/2022)". Advanced Functional Materials 32, n.º 23 (junho de 2022): 2270131. http://dx.doi.org/10.1002/adfm.202270131.
Texto completo da fonteHu, Zhou, Zhibo Wei, Kun Wang, Yan Chen, Rui Zhu, Guoliang Huang e Gengkai Hu. "Engineering zero modes in transformable mechanical metamaterials". Nature Communications 14, n.º 1 (7 de março de 2023). http://dx.doi.org/10.1038/s41467-023-36975-2.
Texto completo da fonteBertoldi, Katia, Vincenzo Vitelli, Johan Christensen e Martin van Hecke. "Flexible mechanical metamaterials". Nature Reviews Materials 2, n.º 11 (17 de outubro de 2017). http://dx.doi.org/10.1038/natrevmats.2017.66.
Texto completo da fonteYang, Haiying, Haibao Lu, Dong-Wei Shu e Yong Qing (Richard) Fu. "Multimodal origami shape memory metamaterials undergoing compression-twist coupling". Smart Materials and Structures, 8 de junho de 2023. http://dx.doi.org/10.1088/1361-665x/acdcd7.
Texto completo da fonteEl Helou, Charles, Philip R. Buskohl, Christopher E. Tabor e Ryan L. Harne. "Digital logic gates in soft, conductive mechanical metamaterials". Nature Communications 12, n.º 1 (12 de março de 2021). http://dx.doi.org/10.1038/s41467-021-21920-y.
Texto completo da fonteHan, Donghai, Wenkang Li, Yushan Hou, Xiaoming Chen, Hongyu Shi, Fanqi Meng, Liuyang Zhang e Xuefeng Chen. "Controllable Wrinkling Inspired Multifunctional Metamaterial for Near‐Field and Holographic Displays". Laser & Photonics Reviews, 20 de dezembro de 2023. http://dx.doi.org/10.1002/lpor.202300879.
Texto completo da fonteSano, Tomohiko G., Emile Hohnadel, Toshiyuki Kawata, Thibaut Métivet e Florence Bertails-Descoubes. "Randomly stacked open cylindrical shells as functional mechanical energy absorber". Communications Materials 4, n.º 1 (25 de agosto de 2023). http://dx.doi.org/10.1038/s43246-023-00383-2.
Texto completo da fonte