Artigos de revistas sobre o tema "Fleet of UAVs"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Fleet of UAVs".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Фесенко, Герман Вікторович, e Вячеслав Сергійович Харченко. "МОДЕЛІ НАДІЙНОСТІ УГРУПОВАНЬ ФЛОТІВ БПЛА З КОВЗНИМ РЕЗЕРВУВАННЯМ ДЛЯ МОНІТОРИНГУ ПОТЕНЦІЙНО НЕБЕЗПЕЧНИХ ОБ’ЄКТІВ". RADIOELECTRONIC AND COMPUTER SYSTEMS, n.º 2 (21 de junho de 2019): 147–56. http://dx.doi.org/10.32620/reks.2019.2.14.
Texto completo da fonteThibbotuwawa, Bocewicz, Zbigniew e Nielsen. "A Solution Approach for UAV Fleet Mission Planning in Changing Weather Conditions". Applied Sciences 9, n.º 19 (22 de setembro de 2019): 3972. http://dx.doi.org/10.3390/app9193972.
Texto completo da fonteGodio, Simone, Stefano Primatesta, Giorgio Guglieri e Fabio Dovis. "A Bioinspired Neural Network-Based Approach for Cooperative Coverage Planning of UAVs". Information 12, n.º 2 (25 de janeiro de 2021): 51. http://dx.doi.org/10.3390/info12020051.
Texto completo da fonteLarson, Jonathan, Paul Isihara, Gabriel Flores, Edwin Townsend, Danilo R. Diedrichs, Christy Baars, Steven Kwon et al. "A priori assessment of a smart-navigated unmanned aerial vehicle disaster cargo fleet". SIMULATION 96, n.º 8 (7 de junho de 2020): 641–53. http://dx.doi.org/10.1177/0037549720921447.
Texto completo da fonteThibbotuwawa, Amila, Grzegorz Bocewicz, Grzegorz Radzki, Peter Nielsen e Zbigniew Banaszak. "UAV Mission Planning Resistant to Weather Uncertainty". Sensors 20, n.º 2 (16 de janeiro de 2020): 515. http://dx.doi.org/10.3390/s20020515.
Texto completo da fonteGadiraju, Divija Swetha, Prasenjit Karmakar, Vijay K. Shah e Vaneet Aggarwal. "GLIDE: Multi-Agent Deep Reinforcement Learning for Coordinated UAV Control in Dynamic Military Environments". Information 15, n.º 8 (11 de agosto de 2024): 477. http://dx.doi.org/10.3390/info15080477.
Texto completo da fonteKats, Vladimir, e Eugene Levner. "Maximizing the Average Environmental Benefit of a Fleet of Drones under a Periodic Schedule of Tasks". Algorithms 17, n.º 7 (28 de junho de 2024): 283. http://dx.doi.org/10.3390/a17070283.
Texto completo da fonteBit-Monnot, Arthur, Rafael Bailon-Ruiz e Simon Lacroix. "A Local Search Approach to Observation Planning with Multiple UAVs". Proceedings of the International Conference on Automated Planning and Scheduling 28 (15 de junho de 2018): 437–45. http://dx.doi.org/10.1609/icaps.v28i1.13924.
Texto completo da fonteJosé-Torra, Ferran, Antonio Pascual-Iserte e Josep Vidal. "A Service-Constrained Positioning Strategy for an Autonomous Fleet of Airborne Base Stations". Sensors 18, n.º 10 (11 de outubro de 2018): 3411. http://dx.doi.org/10.3390/s18103411.
Texto completo da fonteHe, Ping Chuan, e Shu Ling Dai. "Parallel Niche Genetic Algorithm for UAV Fleet Stealth Coverage 3D Corridors Real-Time Planning". Advanced Materials Research 846-847 (novembro de 2013): 1189–96. http://dx.doi.org/10.4028/www.scientific.net/amr.846-847.1189.
Texto completo da fonteSlim, M., M. Saied, H. Mazeh, H. Shraim e C. Francis. "Fault-Tolerant Control Design for Multirotor UAVs Formation Flight". Giroskopiya i Navigatsiya 29, n.º 2 (2021): 78–96. http://dx.doi.org/10.17285/0869-7035.0064.
Texto completo da fonteGrasso, Christian, e Giovanni Schembra. "A Fleet of MEC UAVs to Extend a 5G Network Slice for Video Monitoring with Low-Latency Constraints". Journal of Sensor and Actuator Networks 8, n.º 1 (1 de janeiro de 2019): 3. http://dx.doi.org/10.3390/jsan8010003.
Texto completo da fonteZaitseva, Elena, Vitaly Levashenko, Ravil Mukhamediev, Nicolae Brinzei, Andriy Kovalenko e Adilkhan Symagulov. "Review of Reliability Assessment Methods of Drone Swarm (Fleet) and a New Importance Evaluation Based Method of Drone Swarm Structure Analysis". Mathematics 11, n.º 11 (1 de junho de 2023): 2551. http://dx.doi.org/10.3390/math11112551.
Texto completo da fonteRinaldi, Marco, e Stefano Primatesta. "Comprehensive Task Optimization Architecture for Urban UAV-Based Intelligent Transportation System". Drones 8, n.º 9 (10 de setembro de 2024): 473. http://dx.doi.org/10.3390/drones8090473.
Texto completo da fonteReineman, Benjamin D., Luc Lenain e W. Kendall Melville. "The Use of Ship-Launched Fixed-Wing UAVs for Measuring the Marine Atmospheric Boundary Layer and Ocean Surface Processes". Journal of Atmospheric and Oceanic Technology 33, n.º 9 (setembro de 2016): 2029–52. http://dx.doi.org/10.1175/jtech-d-15-0019.1.
Texto completo da fonteBocewicz, Grzegorz, Grzegorz Radzki, Izabela Nielsen, Marcin Witczak e Banaszak Zbigniew. "UAVs fleet mission planning robust to changing weather conditions". IFAC-PapersOnLine 53, n.º 2 (2020): 10518–24. http://dx.doi.org/10.1016/j.ifacol.2020.12.2798.
Texto completo da fonteBailon-Ruiz, Rafael, Arthur Bit-Monnot e Simon Lacroix. "Real-time wildfire monitoring with a fleet of UAVs". Robotics and Autonomous Systems 152 (junho de 2022): 104071. http://dx.doi.org/10.1016/j.robot.2022.104071.
Texto completo da fonteLagkas, Thomas, Vasileios Argyriou, Stamatia Bibi e Panagiotis Sarigiannidis. "UAV IoT Framework Views and Challenges: Towards Protecting Drones as “Things”". Sensors 18, n.º 11 (17 de novembro de 2018): 4015. http://dx.doi.org/10.3390/s18114015.
Texto completo da fonteTipantuña, Christian, Xavier Hesselbach, Victor Sánchez-Aguero, Francisco Valera, Ivan Vidal e Borja Nogales. "An NFV-Based Energy Scheduling Algorithm for a 5G Enabled Fleet of Programmable Unmanned Aerial Vehicles". Wireless Communications and Mobile Computing 2019 (20 de fevereiro de 2019): 1–20. http://dx.doi.org/10.1155/2019/4734821.
Texto completo da fonteSu, Wenjia, Min Gao, Xinbao Gao e Zhaolong Xuan. "Enhanced Multi-UAV Path Planning in Complex Environments With Voronoi-Based Obstacle Modelling and Q-Learning". International Journal of Aerospace Engineering 2024 (27 de maio de 2024): 1–14. http://dx.doi.org/10.1155/2024/5114696.
Texto completo da fonteLissandrini, Nicola, Giulia Michieletto, Riccardo Antonello, Marta Galvan, Alberto Franco e Angelo Cenedese. "Cooperative Optimization of UAVs Formation Visual Tracking". Robotics 8, n.º 3 (7 de julho de 2019): 52. http://dx.doi.org/10.3390/robotics8030052.
Texto completo da fonteFelli, Lorenzo, Romeo Giuliano, Andrea De Negri, Francesco Terlizzi, Franco Mazzenga e Alessandro Vizzarri. "Maximal LoRa Range for Unmanned Aerial Vehicle Fleet Service in Different Environmental Conditions". IoT 5, n.º 3 (31 de julho de 2024): 509–23. http://dx.doi.org/10.3390/iot5030023.
Texto completo da fonteAlmeida, M., H. Hildmann e G. Solmaz. "DISTRIBUTED UAV-SWARM-BASED REAL-TIME GEOMATIC DATA COLLECTION UNDER DYNAMICALLY CHANGING RESOLUTION REQUIREMENTS". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W6 (23 de agosto de 2017): 5–12. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w6-5-2017.
Texto completo da fonteZemlianko, H., e V. Kharchenko. "Cyber Security Systems of Highly Functional Uav Fleets for Monitoring Critical Infrastructure: Analysis of Disruptions, Attacks and Counterapproaches". Èlektronnoe modelirovanie 46, n.º 1 (10 de fevereiro de 2024): 41–54. http://dx.doi.org/10.15407/emodel.46.01.041.
Texto completo da fonteBousbaa, Fatima Zohra, Chaker Abdelaziz Kerrache, Zohra Mahi, Abdou El Karim Tahari, Nasreddine Lagraa e Mohamed Bachir Yagoubi. "GeoUAVs: A new geocast routing protocol for fleet of UAVs". Computer Communications 149 (janeiro de 2020): 259–69. http://dx.doi.org/10.1016/j.comcom.2019.10.026.
Texto completo da fonteCalamoneri, Tiziana, Federico Corò e Simona Mancini. "Autonomous data detection and inspection with a fleet of UAVs". Computers & Operations Research 168 (agosto de 2024): 106678. http://dx.doi.org/10.1016/j.cor.2024.106678.
Texto completo da fonteKabashkin, Igor. "Availability of Services in Wireless Sensor Network with Aerial Base Station Placement". Journal of Sensor and Actuator Networks 12, n.º 3 (8 de maio de 2023): 39. http://dx.doi.org/10.3390/jsan12030039.
Texto completo da fonteBemposta Rosende, Sergio, Javier Sánchez-Soriano, Carlos Quiterio Gómez Muñoz e Javier Fernández Andrés. "Remote Management Architecture of UAV Fleets for Maintenance, Surveillance, and Security Tasks in Solar Power Plants". Energies 13, n.º 21 (1 de novembro de 2020): 5712. http://dx.doi.org/10.3390/en13215712.
Texto completo da fonteAlhaqbani, Amjaad, Heba Kurdi e Kamal Youcef-Toumi. "Fish-Inspired Task Allocation Algorithm for Multiple Unmanned Aerial Vehicles in Search and Rescue Missions". Remote Sensing 13, n.º 1 (23 de dezembro de 2020): 27. http://dx.doi.org/10.3390/rs13010027.
Texto completo da fonteDEWMINI, Janani, W. Madushan FERNANDO, Izabela Iwa NIELSEN, Grzegorz BOCEWICZ, Amila THIBBOTUWAWA e Zbigniew BANASZAK. "IDENTIFYING THE POTENTIAL OF UNMANNED AERIAL VEHICLE ROUTING FOR BLOOD DISTRIBUTION IN EMERGENCY REQUESTS". Applied Computer Science 19, n.º 4 (31 de dezembro de 2023): 68–87. http://dx.doi.org/10.35784/acs-2023-36.
Texto completo da fonteBono, Antonio, Luigi D’Alfonso, Giuseppe Fedele, Anselmo Filice e Enrico Natalizio. "Path Planning and Control of a UAV Fleet in Bridge Management Systems". Remote Sensing 14, n.º 8 (12 de abril de 2022): 1858. http://dx.doi.org/10.3390/rs14081858.
Texto completo da fonteIbenthal, Julius, Michel Kieffer, Luc Meyer, Hélène Piet-Lahanier e Sébastien Reynaud. "Bounded-error target localization and tracking using a fleet of UAVs". Automatica 132 (outubro de 2021): 109809. http://dx.doi.org/10.1016/j.automatica.2021.109809.
Texto completo da fonteFeng, Yi, Cong Zhang, Stanley Baek, Samir Rawashdeh e Alireza Mohammadi. "Autonomous Landing of a UAV on a Moving Platform Using Model Predictive Control". Drones 2, n.º 4 (12 de outubro de 2018): 34. http://dx.doi.org/10.3390/drones2040034.
Texto completo da fontePham, Thiem V., e Thanh Dong Nguyen. "Path-Following Formation of Fixed-Wing UAVs under Communication Delay: A Vector Field Approach". Drones 8, n.º 6 (2 de junho de 2024): 237. http://dx.doi.org/10.3390/drones8060237.
Texto completo da fonteAlvear, Oscar, Nicola Roberto Zema, Enrico Natalizio e Carlos T. Calafate. "Using UAV-Based Systems to Monitor Air Pollution in Areas with Poor Accessibility". Journal of Advanced Transportation 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/8204353.
Texto completo da fonteRadzki, Grzegorz, Izabela Nielsen, Paulina Golińska-Dawson, Grzegorz Bocewicz e Zbigniew Banaszak. "Reactive UAV Fleet’s Mission Planning in Highly Dynamic and Unpredictable Environments". Sustainability 13, n.º 9 (7 de maio de 2021): 5228. http://dx.doi.org/10.3390/su13095228.
Texto completo da fonteSun, Xiaolei, Naiming Qi e Weiran Yao. "Boolean Networks-Based Auction Algorithm for Task Assignment of Multiple UAVs". Mathematical Problems in Engineering 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/425356.
Texto completo da fonteHassan, Zohaib, Syed Irtiza Ali Shah e Ahsan Sarwar Rana. "Charging Station Distribution Optimization Using Drone Fleet in a Disaster". Journal of Robotics 2022 (31 de julho de 2022): 1–13. http://dx.doi.org/10.1155/2022/7329346.
Texto completo da fonteLoroch, Leszek, e Andrzej Żyluk. "New Technologies for Air Traffic Security". Journal of Konbin 7, n.º 4 (1 de janeiro de 2008): 95–112. http://dx.doi.org/10.2478/v10040-008-0081-z.
Texto completo da fontePerez-Montenegro, Carlos, Matteo Scanavino, Nicoletta Bloise, Elisa Capello, Giorgio Guglieri e Alessandro Rizzo. "A Mission Coordinator Approach for a Fleet of UAVs in Urban Scenarios". Transportation Research Procedia 35 (2018): 110–19. http://dx.doi.org/10.1016/j.trpro.2018.12.018.
Texto completo da fonteEl Ferik, Sami, e Olapido Raphael Thompson. "Biologically Inspired Control Of A Fleet Of Uavs With Threat Evasion Strategy". Asian Journal of Control 18, n.º 6 (30 de maio de 2016): 2283–300. http://dx.doi.org/10.1002/asjc.1324.
Texto completo da fonteZhou, Jinlun, Honghai Zhang, Mingzhuang Hua, Fei Wang e Jia Yi. "P-DRL: A Framework for Multi-UAVs Dynamic Formation Control under Operational Uncertainty and Unknown Environment". Drones 8, n.º 9 (10 de setembro de 2024): 475. http://dx.doi.org/10.3390/drones8090475.
Texto completo da fonteGrzegorz, Radzki, Bocewicz Grzegorz, Dybala Bogdan e Banaszak Zbigniew. "Reactive Planning-Driven Approach to Online UAVs Mission Rerouting and Rescheduling". Applied Sciences 11, n.º 19 (24 de setembro de 2021): 8898. http://dx.doi.org/10.3390/app11198898.
Texto completo da fonteCordeiro, Thiago F. K., João Y. Ishihara e Henrique C. Ferreira. "A Decentralized Low-Chattering Sliding Mode Formation Flight Controller for a Swarm of UAVs". Sensors 20, n.º 11 (30 de maio de 2020): 3094. http://dx.doi.org/10.3390/s20113094.
Texto completo da fonteHtiouech, Skander, Khalil Chebil, Mahdi Khemakhem, Fidaa Abed e Monaji H. Alkiani. "An Extended Model for the UAVs-Assisted Multiperiodic Crowd Tracking Problem". Complexity 2023 (1 de fevereiro de 2023): 1–14. http://dx.doi.org/10.1155/2023/3001812.
Texto completo da fonteZhuo, Ran, Shiqian Song e Yejun Xu. "UAV Communication Network Modeling and Energy Consumption Optimization Based on Routing Algorithm". Computational and Mathematical Methods in Medicine 2022 (28 de junho de 2022): 1–10. http://dx.doi.org/10.1155/2022/4782850.
Texto completo da fonteErdelj, Milan, Borey Uk, David Konam e Enrico Natalizio. "From the Eye of the Storm: An IoT Ecosystem Made of Sensors, Smartphones and UAVs". Sensors 18, n.º 11 (7 de novembro de 2018): 3814. http://dx.doi.org/10.3390/s18113814.
Texto completo da fonteGrünblatt, Rémy, Isabelle Guérin Lassous e Olivier Simonin. "A distributed antenna orientation solution for optimizing communications in a fleet of UAVs". Computer Communications 181 (janeiro de 2022): 102–15. http://dx.doi.org/10.1016/j.comcom.2021.09.020.
Texto completo da fonteBelkadi, Adel, Hernan Abaunza, Laurent Ciarletta, Pedro Castillo e Didier Theilliol. "Design and Implementation of Distributed Path Planning Algorithm for a Fleet of UAVs". IEEE Transactions on Aerospace and Electronic Systems 55, n.º 6 (dezembro de 2019): 2647–57. http://dx.doi.org/10.1109/taes.2019.2906437.
Texto completo da fonteRADZKI, Grzegorz, Amila THIBBOTUWAWA e Grzegorz BOCEWICZ. "UAVS FLIGHT ROUTES OPTIMIZATION IN CHANGING WEATHER CONDITIONS – CONSTRAINT PROGRAMMING APPROACH". Applied Computer Science 15, n.º 3 (30 de setembro de 2019): 5–20. http://dx.doi.org/10.35784/acs-2019-17.
Texto completo da fonte