Artigos de revistas sobre o tema "Flavivirus – Transmission"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Flavivirus – Transmission".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Zhang, Xianwen, Yuhan Li, Yingyi Cao, Ying Wu e Gong Cheng. "The Role of Noncoding RNA in the Transmission and Pathogenicity of Flaviviruses". Viruses 16, n.º 2 (2 de fevereiro de 2024): 242. http://dx.doi.org/10.3390/v16020242.
Texto completo da fonteHabarugira, Gervais, Jasmin Moran, Jessica J. Harrison, Sally R. Isberg, Jody Hobson-Peters, Roy A. Hall e Helle Bielefeldt-Ohmann. "Evidence of Infection with Zoonotic Mosquito-Borne Flaviviruses in Saltwater Crocodiles (Crocodylus porosus) in Northern Australia". Viruses 14, n.º 5 (21 de maio de 2022): 1106. http://dx.doi.org/10.3390/v14051106.
Texto completo da fonteGöertz, G. P., J. J. Fros, P. Miesen, C. B. F. Vogels, M. L. van der Bent, C. Geertsema, C. J. M. Koenraadt, R. P. van Rij, M. M. van Oers e G. P. Pijlman. "Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes". Journal of Virology 90, n.º 22 (31 de agosto de 2016): 10145–59. http://dx.doi.org/10.1128/jvi.00930-16.
Texto completo da fonteCook, Shelley, Shannon N. Bennett, Edward C. Holmes, Reine De Chesse, Gregory Moureau e Xavier de Lamballerie. "Isolation of a new strain of the flavivirus cell fusing agent virus in a natural mosquito population from Puerto Rico". Journal of General Virology 87, n.º 4 (1 de abril de 2006): 735–48. http://dx.doi.org/10.1099/vir.0.81475-0.
Texto completo da fonteVasilakis, Nikos, e Scott C. Weaver. "Flavivirus transmission focusing on Zika". Current Opinion in Virology 22 (fevereiro de 2017): 30–35. http://dx.doi.org/10.1016/j.coviro.2016.11.007.
Texto completo da fonteWang, Hong-Jiang, Xiao-Feng Li, Long Liu, Yan-Peng Xu, Qing Ye, Yong-Qiang Deng, Xing-Yao Huang et al. "The Emerging Duck Flavivirus Is Not Pathogenic for Primates and Is Highly Sensitive to Mammalian Interferon Antiviral Signaling". Journal of Virology 90, n.º 14 (4 de maio de 2016): 6538–48. http://dx.doi.org/10.1128/jvi.00197-16.
Texto completo da fonteGöertz, Giel P., Joyce W. M. van Bree, Anwar Hiralal, Bas M. Fernhout, Carmen Steffens, Sjef Boeren, Tessa M. Visser et al. "Subgenomic flavivirus RNA binds the mosquito DEAD/H-box helicase ME31B and determines Zika virus transmission by Aedes aegypti". Proceedings of the National Academy of Sciences 116, n.º 38 (5 de setembro de 2019): 19136–44. http://dx.doi.org/10.1073/pnas.1905617116.
Texto completo da fonteAYADI, T., A. HAMMOUDA, A. POUX, T. BOULINIER, S. LECOLLINET e S. SELMI. "Evidence of exposure of laughing doves (Spilopelia senegalensis) to West Nile and Usutu viruses in southern Tunisian oases". Epidemiology and Infection 145, n.º 13 (14 de agosto de 2017): 2808–16. http://dx.doi.org/10.1017/s0950268817001789.
Texto completo da fonteWilliams, Richard A. J., Hillary A. Criollo Valencia, Irene López Márquez, Fernando González González, Francisco Llorente, Miguel Ángel Jiménez-Clavero, Núria Busquets, Marta Mateo Barrientos, Gustavo Ortiz-Díez e Tania Ayllón Santiago. "West Nile Virus Seroprevalence in Wild Birds and Equines in Madrid Province, Spain". Veterinary Sciences 11, n.º 6 (7 de junho de 2024): 259. http://dx.doi.org/10.3390/vetsci11060259.
Texto completo da fonteReyes-Ruiz, José Manuel, Juan Fidel Osuna-Ramos, Luis Adrián De Jesús-González, Selvin Noé Palacios-Rápalo, Carlos Daniel Cordero-Rivera, Carlos Noe Farfan-Morales, Arianna Mahely Hurtado-Monzón et al. "The Regulation of Flavivirus Infection by Hijacking Exosome-Mediated Cell–Cell Communication: New Insights on Virus–Host Interactions". Viruses 12, n.º 7 (16 de julho de 2020): 765. http://dx.doi.org/10.3390/v12070765.
Texto completo da fonteDelfin-Riela, Triana, Martín Rossotti, Romina Alvez-Rosado, Carmen Leizagoyen e Gualberto González-Sapienza. "Highly Sensitive Detection of Zika Virus Nonstructural Protein 1 in Serum Samples by a Two-Site Nanobody ELISA". Biomolecules 10, n.º 12 (9 de dezembro de 2020): 1652. http://dx.doi.org/10.3390/biom10121652.
Texto completo da fontePeinado, Stephen A., Matthew T. Aliota, Bradley J. Blitvich e Lyric C. Bartholomay. "Biology and Transmission Dynamics of Aedes flavivirus". Journal of Medical Entomology 59, n.º 2 (22 de janeiro de 2022): 659–66. http://dx.doi.org/10.1093/jme/tjab197.
Texto completo da fonteNoden, Bruce H., Milka Musuuo, Larai Aku-Akai, Berta van der Colf, Israel Chipare e Rob Wilkinson. "Risk assessment of flavivirus transmission in Namibia". Acta Tropica 137 (setembro de 2014): 123–29. http://dx.doi.org/10.1016/j.actatropica.2014.05.010.
Texto completo da fonteTroupin, Andrea, Crystal Grippin e Tonya M. Colpitts. "Flavivirus Pathogenesis in the Mosquito Transmission Vector". Current Clinical Microbiology Reports 4, n.º 3 (13 de julho de 2017): 115–23. http://dx.doi.org/10.1007/s40588-017-0066-6.
Texto completo da fonteWhelan, Jillian N., Nicholas A. Parenti, Joshua Hatterschide, David M. Renner, Yize Li, Hanako M. Reyes, Beihua Dong, Erick R. Perez, Robert H. Silverman e Susan R. Weiss. "Zika virus employs the host antiviral RNase L protein to support replication factory assembly". Proceedings of the National Academy of Sciences 118, n.º 22 (24 de maio de 2021): e2101713118. http://dx.doi.org/10.1073/pnas.2101713118.
Texto completo da fonteSakkas, Hercules, Petros Bozidis, Xenofon Giannakopoulos, Nikolaos Sofikitis e Chrissanthy Papadopoulou. "An Update on Sexual Transmission of Zika Virus". Pathogens 7, n.º 3 (3 de agosto de 2018): 66. http://dx.doi.org/10.3390/pathogens7030066.
Texto completo da fonteGoërtz, G. P., J. J. Fros, P. Miesen, C. B. Vogels, C. Geertsema, C. J. Koenraadt, R. P. van Rij, M. M. van Oers e G. P. Pijlman. "Non-coding RNA determines flavivirus transmission by mosquitoes". International Journal of Infectious Diseases 53 (dezembro de 2016): 162. http://dx.doi.org/10.1016/j.ijid.2016.11.395.
Texto completo da fontePorier, Danielle L., Sarah N. Wilson, Dawn I. Auguste, Andrew Leber, Sheryl Coutermarsh-Ott, Irving C. Allen, Clayton C. Caswell et al. "Enemy of My Enemy: A Novel Insect-Specific Flavivirus Offers a Promising Platform for a Zika Virus Vaccine". Vaccines 9, n.º 10 (7 de outubro de 2021): 1142. http://dx.doi.org/10.3390/vaccines9101142.
Texto completo da fonteChevalier, Véronique, Maud Marsot, Sophie Molia, Harena Rasamoelina, René Rakotondravao, Miguel Pedrono, Steeve Lowenski, Benoit Durand, Sylvie Lecollinet e Cécile Beck. "Serological Evidence of West Nile and Usutu Viruses Circulation in Domestic and Wild Birds in Wetlands of Mali and Madagascar in 2008". International Journal of Environmental Research and Public Health 17, n.º 6 (18 de março de 2020): 1998. http://dx.doi.org/10.3390/ijerph17061998.
Texto completo da fonteColmant, Agathe M. G., Jody Hobson-Peters, Teun A. P. Slijkerman, Jessica J. Harrison, Gorben P. Pijlman, Monique M. van Oers, Peter Simmonds, Roy A. Hall e Jelke J. Fros. "Insect-Specific Flavivirus Replication in Mammalian Cells Is Inhibited by Physiological Temperature and the Zinc-Finger Antiviral Protein". Viruses 13, n.º 4 (29 de março de 2021): 573. http://dx.doi.org/10.3390/v13040573.
Texto completo da fonteBournez, Laure, Gérald Umhang, Eva Faure, Jean-Marc Boucher, Franck Boué, Elsa Jourdain, Mathieu Sarasa et al. "Exposure of Wild Ungulates to the Usutu and Tick-Borne Encephalitis Viruses in France in 2009–2014: Evidence of Undetected Flavivirus Circulation a Decade Ago". Viruses 12, n.º 1 (19 de dezembro de 2019): 10. http://dx.doi.org/10.3390/v12010010.
Texto completo da fonteNava, Jose Angel Regla, Ying-Ting Wang, Camila R. Fontes-Garfias, Thasneem Syed, Andrew Gonzalez, Karla Viramontes, Kristen M. Valentine et al. "Zika virus evolution in the presence of dengue virus-elicited cross-reactive immunity". Journal of Immunology 204, n.º 1_Supplement (1 de maio de 2020): 249.7. http://dx.doi.org/10.4049/jimmunol.204.supp.249.7.
Texto completo da fonteChapagain, Subash, Prince Pal Singh, Khanh Le, David Safronetz, Heidi Wood e Uladzimir Karniychuk. "Japanese encephalitis virus persists in the human reproductive epithelium and porcine reproductive tissues". PLOS Neglected Tropical Diseases 16, n.º 7 (29 de julho de 2022): e0010656. http://dx.doi.org/10.1371/journal.pntd.0010656.
Texto completo da fonteZepeda, Omar, Daniel O. Espinoza, Evelin Martinez, Kaitlyn A. Cross, Sylvia Becker-Dreps, Aravinda M. de Silva, Natalie M. Bowman et al. "Antibody Immunity to Zika Virus among Young Children in a Flavivirus-Endemic Area in Nicaragua". Viruses 15, n.º 3 (21 de março de 2023): 796. http://dx.doi.org/10.3390/v15030796.
Texto completo da fonteNguyen-Tien, Thang, Anh Ngoc Bui, Jiaxin Ling, Son Tran-Hai, Long Pham-Thanh, Vuong Nghia Bui, Tung Duy Dao et al. "The Distribution and Composition of Vector Abundance in Hanoi City, Vietnam: Association with Livestock Keeping and Flavivirus Detection". Viruses 13, n.º 11 (16 de novembro de 2021): 2291. http://dx.doi.org/10.3390/v13112291.
Texto completo da fonteKushwaha, Nikhal, Vipin Kesharwani e Pankaj Kumar Jaiswal. "A GLOBAL CONCERN ON ZIKA VIRUS: TRANSMISSION, DIAGNOSIS, PREVENTION, AND TREATMENT". Journal of Drug Delivery and Therapeutics 8, n.º 5 (11 de setembro de 2018): 136–40. http://dx.doi.org/10.22270/jddt.v8i5.1972.
Texto completo da fonteShivaprasad, Shwetha, e Peter Sarnow. "Cross-species microRNA transmission modulates flavivirus growth in mosquitoes". Trends in Parasitology 38, n.º 5 (maio de 2022): 349–50. http://dx.doi.org/10.1016/j.pt.2022.02.007.
Texto completo da fonteVanegas, Hernan, Fredman González, Yaoska Reyes, Edwing Centeno, Jayrintzina Palacios, Omar Zepeda, Marie Hagbom et al. "Zika RNA and Flavivirus-Like Antigens in the Sperm Cells of Symptomatic and Asymptomatic Subjects". Viruses 13, n.º 2 (21 de janeiro de 2021): 152. http://dx.doi.org/10.3390/v13020152.
Texto completo da fonteOgola, Edwin O., Armanda D. S. Bastos, Gilbert Rotich, Anne Kopp, Inga Slothouwer, Dorcus C. A. Omoga, Rosemary Sang, Baldwyn Torto, Sandra Junglen e David P. Tchouassi. "Analyses of Mosquito Species Composition, Blood-Feeding Habits and Infection with Insect-Specific Flaviviruses in Two Arid, Pastoralist-Dominated Counties in Kenya". Pathogens 12, n.º 7 (24 de julho de 2023): 967. http://dx.doi.org/10.3390/pathogens12070967.
Texto completo da fonteRoldán, Julieta S., Alejandro Cassola e Daniela S. Castillo. "Development of a novel NS1 competitive enzyme-linked immunosorbent assay for the early detection of Zika virus infection". PLOS ONE 16, n.º 8 (17 de agosto de 2021): e0256220. http://dx.doi.org/10.1371/journal.pone.0256220.
Texto completo da fonteSamuel, Glady Hazitha, Michael R. Wiley, Atif Badawi, Zach N. Adelman e Kevin M. Myles. "Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA". Proceedings of the National Academy of Sciences 113, n.º 48 (14 de novembro de 2016): 13863–68. http://dx.doi.org/10.1073/pnas.1600544113.
Texto completo da fonteGrubaugh, Nathan D., Claudia Rückert, Philip M. Armstrong, Angela Bransfield, John F. Anderson, Gregory D. Ebel e Doug E. Brackney. "Transmission bottlenecks and RNAi collectively influence tick-borne flavivirus evolution". Virus Evolution 2, n.º 2 (julho de 2016): vew033. http://dx.doi.org/10.1093/ve/vew033.
Texto completo da fonteMasmejan, Sophie, Didier Musso, Manon Vouga, Leo Pomar, Pradip Dashraath, Milos Stojanov, Alice Panchaud e David Baud. "Zika Virus". Pathogens 9, n.º 11 (28 de outubro de 2020): 898. http://dx.doi.org/10.3390/pathogens9110898.
Texto completo da fonteTan, Terence T. T., Raghavan Bhuvanakantham, Jun Li, Josephine Howe e Mah-Lee Ng. "Tyrosine 78 of premembrane protein is essential for assembly of West Nile virus". Journal of General Virology 90, n.º 5 (1 de maio de 2009): 1081–92. http://dx.doi.org/10.1099/vir.0.007872-0.
Texto completo da fonteBekal, Sadia, Leslie L. Domier, Biruk Gonfa, Nancy K. McCoppin, Kris N. Lambert e Kaustubh Bhalerao. "A novel flavivirus in the soybean cyst nematode". Journal of General Virology 95, n.º 6 (1 de junho de 2014): 1272–80. http://dx.doi.org/10.1099/vir.0.060889-0.
Texto completo da fonteKoh, Cassandra, Annabelle Henrion-Lacritick, Lionel Frangeul e Maria-Carla Saleh. "Interactions of the Insect-Specific Palm Creek Virus with Zika and Chikungunya Viruses in Aedes Mosquitoes". Microorganisms 9, n.º 8 (3 de agosto de 2021): 1652. http://dx.doi.org/10.3390/microorganisms9081652.
Texto completo da fonteSaivish, Marielena Vogel, Vivaldo Gomes da Costa, Gabriela de Lima Menezes, Roosevelt Alves da Silva, Gislaine Celestino Dutra da Silva, Marcos Lázaro Moreli, Livia Sacchetto, Carolina Colombelli Pacca, Nikos Vasilakis e Maurício Lacerda Nogueira. "Rocio Virus: An Updated View on an Elusive Flavivirus". Viruses 13, n.º 11 (16 de novembro de 2021): 2293. http://dx.doi.org/10.3390/v13112293.
Texto completo da fonteLi, Xuesong, Ying Shi, Qinfang Liu, Ying Wang, Guoxin Li, Qiaoyang Teng, Yuee Zhang, Sidang Liu e Zejun Li. "Airborne Transmission of a Novel Tembusu Virus in Ducks". Journal of Clinical Microbiology 53, n.º 8 (10 de junho de 2015): 2734–36. http://dx.doi.org/10.1128/jcm.00770-15.
Texto completo da fonteBeales, Lucy P., Andreas Holzenburg e David J. Rowlands. "Viral Internal Ribosome Entry Site Structures Segregate into Two Distinct Morphologies". Journal of Virology 77, n.º 11 (1 de junho de 2003): 6574–79. http://dx.doi.org/10.1128/jvi.77.11.6574-6579.2003.
Texto completo da fonteCollins, Matthew H., e Jesse J. Waggoner. "Detecting Vertical Zika Transmission: Emerging Diagnostic Approaches for an Emerged Flavivirus". ACS Infectious Diseases 5, n.º 7 (5 de abril de 2019): 1055–69. http://dx.doi.org/10.1021/acsinfecdis.9b00003.
Texto completo da fontePlante, Jessica A., Kenneth S. Plante, Vsevolod L. Popov, Divya P. Shinde, Steven G. Widen, Michaela Buenemann, Mauricio L. Nogueira e Nikos Vasilakis. "Morphologic and Genetic Characterization of Ilheus Virus, a Potential Emergent Flavivirus in the Americas". Viruses 15, n.º 1 (10 de janeiro de 2023): 195. http://dx.doi.org/10.3390/v15010195.
Texto completo da fonteCasades-Martí, Laia, Rocío Holgado-Martín, Pilar Aguilera-Sepúlveda, Francisco Llorente, Elisa Pérez-Ramírez, Miguel Ángel Jiménez-Clavero e Francisco Ruiz-Fons. "Risk Factors for Exposure of Wild Birds to West Nile Virus in a Gradient of Wildlife-Livestock Interaction". Pathogens 12, n.º 1 (3 de janeiro de 2023): 83. http://dx.doi.org/10.3390/pathogens12010083.
Texto completo da fonteKurucz, Nina, Jamie Lee McMahon, Allan Warchot, Glen Hewitson, Jean Barcelon, Frederick Moore, Jasmin Moran et al. "Nucleic Acid Preservation Card Surveillance Is Effective for Monitoring Arbovirus Transmission on Crocodile Farms and Provides a One Health Benefit to Northern Australia". Viruses 14, n.º 6 (20 de junho de 2022): 1342. http://dx.doi.org/10.3390/v14061342.
Texto completo da fonteChiuya, Tatenda, Daniel K. Masiga, Laura C. Falzon, Armanda D. S. Bastos, Eric M. Fèvre e Jandouwe Villinger. "A survey of mosquito-borne and insect-specific viruses in hospitals and livestock markets in western Kenya". PLOS ONE 16, n.º 5 (28 de maio de 2021): e0252369. http://dx.doi.org/10.1371/journal.pone.0252369.
Texto completo da fonteGothe, Leonard M. R., Stefanie Ganzenberg, Ute Ziegler, Anna Obiegala, Katharina L. Lohmann, Michael Sieg, Thomas W. Vahlenkamp, Martin H. Groschup, Uwe Hörügel e Martin Pfeffer. "Horses as Sentinels for the Circulation of Flaviviruses in Eastern–Central Germany". Viruses 15, n.º 5 (30 de abril de 2023): 1108. http://dx.doi.org/10.3390/v15051108.
Texto completo da fontePlatt, Derek J., Amber M. Smith, Nitin Arora, Michael S. Diamond, Carolyn B. Coyne e Jonathan J. Miner. "Zika virus–related neurotropic flaviviruses infect human placental explants and cause fetal demise in mice". Science Translational Medicine 10, n.º 426 (31 de janeiro de 2018): eaao7090. http://dx.doi.org/10.1126/scitranslmed.aao7090.
Texto completo da fonteTuplin, A., D. J. Evans, A. Buckley, I. M. Jones, E. A. Gould e T. S. Gritsun. "Replication enhancer elements within the open reading frame of tick-borne encephalitis virus and their evolution within the Flavivirus genus". Nucleic Acids Research 39, n.º 16 (27 de maio de 2011): 7034–48. http://dx.doi.org/10.1093/nar/gkr237.
Texto completo da fonteSaiyasombat, Rungrat, Bethany G. Bolling, Aaron C. Brault, Lyric C. Bartholomay e Bradley J. Blitvich. "Evidence of Efficient Transovarial Transmission of Culex Flavivirus byCulex pipiens(Diptera: Culicidae)". Journal of Medical Entomology 48, n.º 5 (1 de setembro de 2011): 1031–38. http://dx.doi.org/10.1603/me11043.
Texto completo da fonteMac, Peter Asaga, Axel Kroeger, Theo Daehne, Chukwuma Anyaike, Raman Velayudhan e Marcus Panning. "Zika, Flavivirus and Malaria Antibody Cocirculation in Nigeria". Tropical Medicine and Infectious Disease 8, n.º 3 (14 de março de 2023): 171. http://dx.doi.org/10.3390/tropicalmed8030171.
Texto completo da fonteMartin, Hélène, Jonathan Barthelemy, Yamileth Chin, Mathilde Bergamelli, Nathalie Moinard, Géraldine Cartron, Yann Tanguy Le Gac, Cécile E. Malnou e Yannick Simonin. "Usutu Virus Infects Human Placental Explants and Induces Congenital Defects in Mice". Viruses 14, n.º 8 (25 de julho de 2022): 1619. http://dx.doi.org/10.3390/v14081619.
Texto completo da fonte