Artigos de revistas sobre o tema "Flammes turbulentes en expansion"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 37 melhores artigos de revistas para estudos sobre o assunto "Flammes turbulentes en expansion".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
CRETA, F., e M. MATALON. "Propagation of wrinkled turbulent flames in the context of hydrodynamic theory". Journal of Fluid Mechanics 680 (1 de junho de 2011): 225–64. http://dx.doi.org/10.1017/jfm.2011.157.
Texto completo da fonteRobin, Vincent, Arnaud Mura e Michel Champion. "Direct and indirect thermal expansion effects in turbulent premixed flames". Journal of Fluid Mechanics 689 (3 de novembro de 2011): 149–82. http://dx.doi.org/10.1017/jfm.2011.409.
Texto completo da fonteChakraborty, Nilanjan. "Influence of Thermal Expansion on Fluid Dynamics of Turbulent Premixed Combustion and Its Modelling Implications". Flow, Turbulence and Combustion 106, n.º 3 (março de 2021): 753–848. http://dx.doi.org/10.1007/s10494-020-00237-8.
Texto completo da fonteMassey, James C., Ivan Langella e Nedunchezhian Swaminathan. "A scaling law for the recirculation zone length behind a bluff body in reacting flows". Journal of Fluid Mechanics 875 (22 de julho de 2019): 699–724. http://dx.doi.org/10.1017/jfm.2019.475.
Texto completo da fonteZurbach, Stephan, Danièle Garreton, Mohamed Kanniche e Sébastien Candel. "Calcul de flammes turbulentes non prémélangées à l'aide d'une approche probabiliste et d'une cinétique chimique réduite". Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy 327, n.º 10 (setembro de 1999): 997–1004. http://dx.doi.org/10.1016/s1287-4620(00)87010-6.
Texto completo da fonteSchmidt-Laine, C., e A. Ben Taïb. "Sur un algorithme en volumes finis non structurés pour la simulation des flammes turbulentes en chimie infiniment rapide". ESAIM: Mathematical Modelling and Numerical Analysis 32, n.º 6 (1998): 681–97. http://dx.doi.org/10.1051/m2an/1998320606811.
Texto completo da fonteSabelnikov, V. A., A. N. Lipatnikov, S. Nishiki e T. Hasegawa. "Investigation of the influence of combustion-induced thermal expansion on two-point turbulence statistics using conditioned structure functions". Journal of Fluid Mechanics 867 (20 de março de 2019): 45–76. http://dx.doi.org/10.1017/jfm.2019.128.
Texto completo da fonteChakraborty, Nilanjan, Sanjeev Kumar Ghai e Hong G. Im. "Anisotropy of Reynolds Stresses and Their Dissipation Rates in Lean H2-Air Premixed Flames in Different Combustion Regimes". Energies 17, n.º 21 (25 de outubro de 2024): 5325. http://dx.doi.org/10.3390/en17215325.
Texto completo da fonteJaseliūnaitė, Justina, Mantas Povilaitis e Ieva Stučinskaitė. "RANS- and TFC-Based Simulation of Turbulent Combustion in a Small-Scale Venting Chamber". Energies 14, n.º 18 (10 de setembro de 2021): 5710. http://dx.doi.org/10.3390/en14185710.
Texto completo da fonteRobin, Vincent, Arnaud Mura, Michel Champion e Tatsuya Hasegawa. "Modeling the Effects of Thermal Expansion on Scalar Turbulent Fluxes in Turbulent Premixed Flames". Combustion Science and Technology 182, n.º 4-6 (10 de junho de 2010): 449–64. http://dx.doi.org/10.1080/00102200903462896.
Texto completo da fonteAkkerman, V. B., e V. V. Bychkov. "Flames with Realistic Thermal Expansion in a Time-Dependent Turbulent Flow". Combustion, Explosion, and Shock Waves 41, n.º 4 (julho de 2005): 363–74. http://dx.doi.org/10.1007/s10573-005-0044-9.
Texto completo da fonteWang, Siyuan, Haiou Wang, Kun Luo e Jianren Fan. "The Effects of Differential Diffusion on Turbulent Non-Premixed Flames LO2/CH4 under Transcritical Conditions Using Large-Eddy Simulation". Energies 16, n.º 3 (18 de janeiro de 2023): 1065. http://dx.doi.org/10.3390/en16031065.
Texto completo da fonteJoo, S. H., K. M. Chun, Y. Shin e K. C. Lee. "An Investigation of Flame Expansion Speed With a Strong Swirl Motion Using High-Speed Visualization". Journal of Engineering for Gas Turbines and Power 125, n.º 2 (1 de abril de 2003): 485–93. http://dx.doi.org/10.1115/1.1564067.
Texto completo da fonteSabelnikov, Vladimir A., e Andrei N. Lipatnikov. "Recent Advances in Understanding of Thermal Expansion Effects in Premixed Turbulent Flames". Annual Review of Fluid Mechanics 49, n.º 1 (3 de janeiro de 2017): 91–117. http://dx.doi.org/10.1146/annurev-fluid-010816-060104.
Texto completo da fonteLu, Xiaoyi, e Carlos Pantano. "Linear stability analysis of a premixed flame with transverse shear". Journal of Fluid Mechanics 765 (19 de janeiro de 2015): 150–66. http://dx.doi.org/10.1017/jfm.2014.728.
Texto completo da fonteZhu, Yuejin, Lei Yu, Gang Dong, Jianfeng Pan e Zhenhua Pan. "Flow Topology of Three-Dimensional Spherical Flame in Shock Accelerated Flows". Advances in Materials Science and Engineering 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/3158091.
Texto completo da fonteGHOSAL, SANDIP, e LUC VERVISCH. "Theoretical and numerical study of a symmetrical triple flame using the parabolic flame path approximation". Journal of Fluid Mechanics 415 (25 de julho de 2000): 227–60. http://dx.doi.org/10.1017/s0022112000008685.
Texto completo da fonteSattelmayer, T., W. Polifke, D. Winkler e K. Do¨bbeling. "NOx-Abatement Potential of Lean-Premixed GT Combustors". Journal of Engineering for Gas Turbines and Power 120, n.º 1 (1 de janeiro de 1998): 48–59. http://dx.doi.org/10.1115/1.2818087.
Texto completo da fonteChampion, Michel, Vincent Robin e Arnaud Mura. "A simple strategy to model the effects of thermal expansion on turbulent transports in premixed flames". Comptes Rendus Mécanique 340, n.º 11-12 (novembro de 2012): 769–76. http://dx.doi.org/10.1016/j.crme.2012.10.025.
Texto completo da fonteAhmed, Umair, Sanjeev Kumar Ghai e Nilanjan Chakraborty. "Direct Numerical Simulation Analysis of the Closure of Turbulent Scalar Flux during Flame–Wall Interaction of Premixed Flames within Turbulent Boundary Layers". Energies 17, n.º 8 (18 de abril de 2024): 1930. http://dx.doi.org/10.3390/en17081930.
Texto completo da fonteWENZEL, HOLGER, e NORBERT PETERS. "Direct Numerical Simulation and Modeling of Kinematic Restoration, Dissipation and Gas Expansion Effects of Premixed Flames in Homogeneous Turbulence". Combustion Science and Technology 158, n.º 1 (setembro de 2000): 273–97. http://dx.doi.org/10.1080/00102200008947337.
Texto completo da fonteGiannattasio, Pietro, Marco Pretto e Enrico De Betta. "A phenomenological model for predicting the early development of the flame kernel in spark-ignition engines". Journal of Physics: Conference Series 2648, n.º 1 (1 de dezembro de 2023): 012070. http://dx.doi.org/10.1088/1742-6596/2648/1/012070.
Texto completo da fonteЧугуев, А. П., А. В. Мордвинова, А. Н. Сычев e И. А. Мартынова. "STUDY OF FAN GAS JETS AND DIFFUSIVE FAN FLAMES". Pozharnaia bezopasnost`, n.º 4(113) (13 de dezembro de 2023): 30–35. http://dx.doi.org/10.37657/vniipo.pb.2023.113.4.003.
Texto completo da fonteKim, Seung Hyun. "A Method to Simulate an Outwardly Propagating Turbulent Premixed Flame at Constant Pressure". Flow, Turbulence and Combustion, 13 de abril de 2024. http://dx.doi.org/10.1007/s10494-024-00544-4.
Texto completo da fonteSabelnikov, Vladimir Anatolievich, Andrei Lipatnikov, Nikolay Nikitin, Francisco Hernandez Perez e Hong G. Im. "Conditioned structure functions in turbulent hydrogen/air flames". Physics of Fluids, 10 de julho de 2022. http://dx.doi.org/10.1063/5.0096509.
Texto completo da fonteSabelnikov, Vladimir Anatolievich, Andrei Lipatnikov, Nikolay Nikitin, Francisco Hernandez Perez e Hong G. Im. "Effects of thermal expansion on moderately intense turbulence in premixed flames". Physics of Fluids, 20 de outubro de 2022. http://dx.doi.org/10.1063/5.0123211.
Texto completo da fonteAhmed, Umair, Nilanjan Chakraborty e Markus Klein. "Influence of Flow Configuration and Thermal Wall Boundary Conditions on Turbulence During Premixed Flame-Wall Interaction within Low Reynolds Number Boundary Layers". Flow, Turbulence and Combustion, 6 de julho de 2023. http://dx.doi.org/10.1007/s10494-023-00437-y.
Texto completo da fonteQian, Xiang, Hao Lu, Chun Zou e Hong Yao. "On the inverse kinetic energy cascade in premixed isotropic turbulent flames". International Journal of Modern Physics C, 4 de setembro de 2021, 2250015. http://dx.doi.org/10.1142/s0129183122500152.
Texto completo da fonteRobin, Vincent, Arnaud Mura e Michel Champion. "Direct and indirect thermal expansion effects in turbulent premixed flames". Journal of Fluid Mechanics, 3 de novembro de 2011, 1–34. http://dx.doi.org/10.1017/jfm.h2011.409.
Texto completo da fonteSabelnikov, V. A., A. N. Lipatnikov, N. V. Nikitin, F. E. Hernández Pérez e H. G. Im. "Backscatter of scalar variance in turbulent premixed flames". Journal of Fluid Mechanics 960 (30 de março de 2023). http://dx.doi.org/10.1017/jfm.2023.195.
Texto completo da fonteVelez, Carlos, Scott Martin, Aleksander Jemcov e Subith Vasu. "Large Eddy Simulation of an Enclosed Turbulent Reacting Methane Jet With the Tabulated Premixed Conditional Moment Closure Method". Journal of Engineering for Gas Turbines and Power 138, n.º 10 (12 de abril de 2016). http://dx.doi.org/10.1115/1.4032846.
Texto completo da fonteBriones, Alejandro M., Balu Sekar e Timothy Erdmann. "Effect of Centrifugal Force on Turbulent Premixed Flames". Journal of Engineering for Gas Turbines and Power 137, n.º 1 (5 de agosto de 2014). http://dx.doi.org/10.1115/1.4028057.
Texto completo da fonteLatifi, Mojtaba, e Mohammad Mahdi Salehi. "Numerical simulation of turbulent premixed flames with the conditional source-term estimation model using Bernstein polynomial expansion". Combustion Theory and Modelling, 25 de setembro de 2023, 1–21. http://dx.doi.org/10.1080/13647830.2023.2261895.
Texto completo da fonteJiang, Lei, Gang Li, Xi Jiang, Hongbin Hu, Bo Xiao, Yanji Xu e Zhijun Lei. "Experimental investigation of non-premixed and partially premixed methane lifted flames established on a lobed swirl injector". Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 9 de setembro de 2020, 095765092095500. http://dx.doi.org/10.1177/0957650920955004.
Texto completo da fonteVersailles, Philippe, Antoine Durocher, Gilles Bourque e Jeffrey M. Bergthorson. "Measurements of the reactivity of premixed, stagnation, methane-air flames at gas turbine relevant pressures". Journal of Engineering for Gas Turbines and Power 141, n.º 1 (17 de outubro de 2018). http://dx.doi.org/10.1115/1.4041125.
Texto completo da fonteAhmed, Umair, Sanjeev Kumar Ghai e Nilanjan Chakraborty. "Relations between Reynolds stresses and their dissipation rates during premixed flame–wall interaction within turbulent boundary layers". Physics of Fluids 36, n.º 4 (1 de abril de 2024). http://dx.doi.org/10.1063/5.0204038.
Texto completo da fonteLi, Qinyuan, Bo Yan, Mingbo Sun, Yifu Tian, Minggang Wan, Zhongwei Wang, Xueni Yang, Tao Tang e Jiajian Zhu. "Spatiotemporal visualization of instantaneous flame structure in a hydrogen-fueled axisymmetric supersonic combustor". Physics of Fluids 36, n.º 12 (1 de dezembro de 2024). https://doi.org/10.1063/5.0235001.
Texto completo da fonte