Artigos de revistas sobre o tema "Flame-Spray interaction"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Flame-Spray interaction".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Franzelli, Benedetta, Aymeric Vié e Matthias Ihme. "Characterizing spray flame–vortex interaction: A spray spectral diagram for extinction". Combustion and Flame 163 (janeiro de 2016): 100–114. http://dx.doi.org/10.1016/j.combustflame.2015.09.006.
Texto completo da fonteSacomano Filho, Fernando Luiz, Louis Dressler, Arash Hosseinzadeh, Amsini Sadiki e Guenther Carlos Krieger Filho. "Investigations of Evaporative Cooling and Turbulence Flame Interaction Modeling in Ethanol Turbulent Spray Combustion Using Tabulated Chemistry". Fluids 4, n.º 4 (31 de outubro de 2019): 187. http://dx.doi.org/10.3390/fluids4040187.
Texto completo da fonteInnocenti, Alessandro, Antonio Andreini, Bruno Facchini e Antonio Peschiulli. "Numerical analysis of the dynamic flame response of a spray flame for aero-engine applications". International Journal of Spray and Combustion Dynamics 9, n.º 4 (16 de maio de 2017): 310–29. http://dx.doi.org/10.1177/1756827717703577.
Texto completo da fonteDressler, Louis, Fernando Luiz Sacomano Filho, Florian Ries, Hendrik Nicolai, Johannes Janicka e Amsini Sadiki. "Numerical Prediction of Turbulent Spray Flame Characteristics Using the Filtered Eulerian Stochastic Field Approach Coupled to Tabulated Chemistry". Fluids 6, n.º 2 (22 de janeiro de 2021): 50. http://dx.doi.org/10.3390/fluids6020050.
Texto completo da fonteLackmann, Tim, Andreas Nygren, Anders Karlsson e Michael Oevermann. "Investigation of turbulence–chemistry interactions in a heavy-duty diesel engine with a representative interactive linear eddy model". International Journal of Engine Research 21, n.º 8 (5 de dezembro de 2018): 1469–79. http://dx.doi.org/10.1177/1468087418812319.
Texto completo da fonteZhao, Wanhui, Haiqiao Wei, Ming Jia, Zhen Lu, Kai H. Luo, Rui Chen e Lei Zhou. "Flame–spray interaction and combustion features in split-injection spray flames under diesel engine-like conditions". Combustion and Flame 210 (dezembro de 2019): 204–21. http://dx.doi.org/10.1016/j.combustflame.2019.08.031.
Texto completo da fonteSenda, J., e H. G. Fujimoto. "Multidimensional Modeling of Impinging Sprays on the Wall in Diesel Engines". Applied Mechanics Reviews 52, n.º 4 (1 de abril de 1999): 119–38. http://dx.doi.org/10.1115/1.3098930.
Texto completo da fonteSantoro, Vito S., Dimitrios C. Kyritsis e Alessandro Gomez. "An experimental study of vortex-flame interaction in counterflow spray diffusion flames". Proceedings of the Combustion Institute 28, n.º 1 (janeiro de 2000): 1023–30. http://dx.doi.org/10.1016/s0082-0784(00)80310-0.
Texto completo da fonteMaes, Noud, Mark Hooglugt, Nico Dam, Bart Somers e Gilles Hardy. "On the influence of wall distance and geometry for high-pressure n-dodecane spray flames in a constant-volume chamber". International Journal of Engine Research 21, n.º 2 (17 de setembro de 2019): 406–17. http://dx.doi.org/10.1177/1468087419875242.
Texto completo da fonteVenturi, F., e T. Hussain. "Radial Injection in Suspension High Velocity Oxy-Fuel (S-HVOF) Thermal Spray of Graphene Nanoplatelets for Tribology". Journal of Thermal Spray Technology 29, n.º 1-2 (14 de novembro de 2019): 255–69. http://dx.doi.org/10.1007/s11666-019-00957-y.
Texto completo da fonteJiang, Tsung Leo, e Huei-Huang Chiu. "Combustion of a Fuel Droplet Surrounded by Oxidizer Droplets". Journal of Heat Transfer 113, n.º 4 (1 de novembro de 1991): 959–65. http://dx.doi.org/10.1115/1.2911228.
Texto completo da fonteConte, Francesco, Serena Esposito, Vladimiro Dal Santo, Alessandro Di Michele, Gianguido Ramis e Ilenia Rossetti. "Flame Pyrolysis Synthesis of Mixed Oxides for Glycerol Steam Reforming". Materials 14, n.º 3 (31 de janeiro de 2021): 652. http://dx.doi.org/10.3390/ma14030652.
Texto completo da fonteShinjo, J., e A. Umemura. "Droplet/turbulence interaction and early flame kernel development in an autoigniting realistic dense spray". Proceedings of the Combustion Institute 34, n.º 1 (janeiro de 2013): 1553–60. http://dx.doi.org/10.1016/j.proci.2012.05.074.
Texto completo da fonteTianshui, Liang, Liu Mengjie, Wei Xinli e Zhong Wei. "An Experimental Study on the Interaction of Water Mist with Vertical/Horizontal Spray Flame". Procedia Engineering 84 (2014): 543–52. http://dx.doi.org/10.1016/j.proeng.2014.10.466.
Texto completo da fonteGehre, Patrick, Anne Schmidt, Steffen Dudczig, Jana Hubálková, Christos G. Aneziris, Nick Child, Ian Delaney, Gilbert Rancoule e Duane DeBastiani. "Interaction of slip- and flame-spray coated carbon-bonded alumina filters with steel melts". Journal of the American Ceramic Society 101, n.º 7 (24 de janeiro de 2018): 3222–33. http://dx.doi.org/10.1111/jace.15431.
Texto completo da fonteHulkkonen, Tuomo, Aki Tilli, Ossi Kaario, Olli Ranta, Teemu Sarjovaara, Ville Vuorinen, Martti Larmi e Kalle Lehto. "Late post-injection of biofuel blends in an optical diesel engine: Experimental and theoretical discussion on the inevitable wall-wetting effects on oil dilution". International Journal of Engine Research 18, n.º 7 (17 de agosto de 2016): 645–56. http://dx.doi.org/10.1177/1468087416663548.
Texto completo da fonteTong, Xin, Jiafeng Yu, Ling Zhang e Jian Sun. "Fabrication of Stable Cu-Ce Catalyst with Active Interfacial Sites for NOx Elimination by Flame Spray Pyrolysis". Catalysts 12, n.º 4 (11 de abril de 2022): 432. http://dx.doi.org/10.3390/catal12040432.
Texto completo da fonteHan, Karam, Jaeyeob Seo e Kang Y. Huh. "Lagrangian conditional moment closure model with flame group interaction for lifted turbulent spray jet flames". Combustion Theory and Modelling 21, n.º 3 (24 de outubro de 2016): 419–39. http://dx.doi.org/10.1080/13647830.2016.1242780.
Texto completo da fonteKhalid, Amir, M. Jaat, Izzuddin Zaman, B. Manshoor e Mas Fawzi. "Effect of Pilot Injection on Mixture Formation, Ignition Process and Flame Development in Diesel Combustion". Applied Mechanics and Materials 390 (agosto de 2013): 327–32. http://dx.doi.org/10.4028/www.scientific.net/amm.390.327.
Texto completo da fonteOzel Erol, Gulcan, e Nilanjan Chakraborty. "Effects of Mean Inflow Velocity and Droplet Diameter on the Propagation of Turbulent V-Shaped Flames in Droplet-Laden Mixtures". Fluids 6, n.º 1 (22 de dezembro de 2020): 1. http://dx.doi.org/10.3390/fluids6010001.
Texto completo da fonteRaut, Ankit A., e J. M. Mallikarjuna. "Effects of direct water injection and injector configurations on performance and emission characteristics of a gasoline direct injection engine: A computational fluid dynamics analysis". International Journal of Engine Research 21, n.º 8 (2 de dezembro de 2019): 1520–40. http://dx.doi.org/10.1177/1468087419890418.
Texto completo da fonteFriedman, J., M. Renksizbulut e A. Zaheer. "THE INTERACTION OF AN ANNULAR AIR JET WITH A METHANOL SPRAY FLAME IN A CYLINDRICAL COMBUSTION CHAMBER". Transactions of the Canadian Society for Mechanical Engineering 28, n.º 3-4 (setembro de 2004): 593–602. http://dx.doi.org/10.1139/tcsme-2004-0040.
Texto completo da fonteWinklhofer, E., B. Ahmadi-Befrui, B. Wiesler e G. Cresnoverh. "The Influence of Injection Rate Shaping on Diesel Fuel Sprays—An Experimental Study". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 206, n.º 3 (julho de 1992): 173–83. http://dx.doi.org/10.1243/pime_proc_1992_206_176_02.
Texto completo da fonteLucchini, Tommaso, Daniel Pontoni, Gianluca D’Errico e Bart Somers. "Modeling diesel combustion with tabulated kinetics and different flame structure assumptions based on flamelet approach". International Journal of Engine Research 21, n.º 1 (16 de julho de 2019): 89–100. http://dx.doi.org/10.1177/1468087419862945.
Texto completo da fonteZhao, Feng, Shuangde Li, Xiaofeng Wu, Renliang Yue, Weiman Li, Xicuo Zha, Yuzhou Deng e Yunfa Chen. "Catalytic Behaviour of Flame-Made CuO-CeO2 Nanocatalysts in Efficient CO Oxidation". Catalysts 9, n.º 3 (13 de março de 2019): 256. http://dx.doi.org/10.3390/catal9030256.
Texto completo da fonteOng, Jiun Cai, Kar Mun Pang, Mehdi Jangi, Xue-Song Bai e Jens Honore Walther. "Numerical Study of the Influence of Turbulence–Chemistry Interaction on URANS Simulations of Diesel Spray Flame Structures under Marine Engine-like Conditions". Energy & Fuels 35, n.º 14 (24 de junho de 2021): 11457–67. http://dx.doi.org/10.1021/acs.energyfuels.1c01091.
Texto completo da fonteRoque, Anthony, Fabrice Foucher, Quentin Lamiel, Bill Imoehl, Nicolas Lamarque e Jerome Helie. "Impact of gasoline direct injection fuel films on exhaust soot production in a model experiment". International Journal of Engine Research 21, n.º 2 (7 de outubro de 2019): 367–90. http://dx.doi.org/10.1177/1468087419879851.
Texto completo da fonteVan Everbroeck, Tim, Aggeliki Papavasiliou, Radu-George Ciocarlan, Evangelos Poulakis, Constantine J. Philippopoulos, Erika O. Jardim, Joaquin Silvestre-Albero, Elias Sakellis, Pegie Cool e Fotios K. Katsaros. "Towards Highly Loaded and Finely Dispersed CuO Catalysts via ADP: Effect of the Alumina Support". Catalysts 12, n.º 6 (8 de junho de 2022): 628. http://dx.doi.org/10.3390/catal12060628.
Texto completo da fonteTommasi, Matteo, Davide Ceriotti, Alice Gramegna, Simge Naz Degerli, Gianguido Ramis e Ilenia Rossetti. "Oxidative Steam Reforming of Methanol over Cu-Based Catalysts". Catalysts 14, n.º 11 (28 de outubro de 2024): 759. http://dx.doi.org/10.3390/catal14110759.
Texto completo da fonteMalkeson, S. P., U. Ahmed, A. L. Pillai, N. Chakraborty e R. Kurose. "Flame self-interactions in an open turbulent jet spray flame". Physics of Fluids 33, n.º 3 (1 de março de 2021): 035114. http://dx.doi.org/10.1063/5.0039155.
Texto completo da fontePera, C., e J. Reveillon. "Direct numerical simulation of spray flame/acoustic interactions". Proceedings of the Combustion Institute 31, n.º 2 (janeiro de 2007): 2283–90. http://dx.doi.org/10.1016/j.proci.2006.07.153.
Texto completo da fonteÖzdemir, İ. Bedii, e Cengizhan Cengiz. "Use of Modified Temperature-Composition PDF Formulation in Modeling of Flame Dynamics in Diesel Engine Combustion". International Journal of Nonlinear Sciences and Numerical Simulation 19, n.º 6 (25 de setembro de 2018): 643–67. http://dx.doi.org/10.1515/ijnsns-2018-0023.
Texto completo da fontePiatkowski, M., M. Taradaichenko e I. Zbicinski. "Energy Consumption and Product Quality Interactions in Flame Spray Drying". Drying Technology 33, n.º 9 (27 de maio de 2014): 1022–28. http://dx.doi.org/10.1080/07373937.2014.924137.
Texto completo da fontePatel, Nayan, e Suresh Menon. "Simulation of spray–turbulence–flame interactions in a lean direct injection combustor". Combustion and Flame 153, n.º 1-2 (abril de 2008): 228–57. http://dx.doi.org/10.1016/j.combustflame.2007.09.011.
Texto completo da fonteDesantes, Jose M., Jose M. Garcia-Oliver, Ricardo Novella e Leonardo Pachano. "A numerical study of the effect of nozzle diameter on diesel combustion ignition and flame stabilization". International Journal of Engine Research 21, n.º 1 (19 de julho de 2019): 101–21. http://dx.doi.org/10.1177/1468087419864203.
Texto completo da fonteRaju, M. S., e W. A. Sirignano. "Spray Computations in a Centerbody Combustor". Journal of Engineering for Gas Turbines and Power 111, n.º 4 (1 de outubro de 1989): 710–18. http://dx.doi.org/10.1115/1.3240317.
Texto completo da fonteFranzelli, Benedetta, Philippe Scouflaire e Nasser Darabiha. "Using In Situ Measurements to Experimentally Characterize TiO2 Nanoparticle Synthesis in a Turbulent Isopropyl Alcohol Flame". Materials 14, n.º 22 (22 de novembro de 2021): 7083. http://dx.doi.org/10.3390/ma14227083.
Texto completo da fonteFossi, Alain, Alain DeChamplain e Benjamin Akih-Kumgeh. "Unsteady RANS and scale adaptive simulations of a turbulent spray flame in a swirled-stabilized gas turbine model combustor using tabulated chemistry". International Journal of Numerical Methods for Heat & Fluid Flow 25, n.º 5 (1 de junho de 2015): 1064–88. http://dx.doi.org/10.1108/hff-09-2014-0272.
Texto completo da fonteGallot-Lavallée, S., W. P. Jones e A. J. Marquis. "Large Eddy Simulation of an Ethanol Spray Flame with Secondary Droplet Breakup". Flow, Turbulence and Combustion 107, n.º 3 (1 de abril de 2021): 709–43. http://dx.doi.org/10.1007/s10494-021-00248-z.
Texto completo da fonteZhang, Yan, Hu Wang, Ambrus Both, Likun Ma e Mingfa Yao. "Effects of turbulence-chemistry interactions on auto-ignition and flame structure for n-dodecane spray combustion". Combustion Theory and Modelling 23, n.º 5 (1 de junho de 2019): 907–34. http://dx.doi.org/10.1080/13647830.2019.1600722.
Texto completo da fonteGao, Wei, Jinhu Yang, Yong Mu, Fuqiang Liu, Shaolin Wang, Kaixing Wang, Cunxi Liu, Gang Xu e Junqiang Zhu. "Injector-injector interactions on the flow field, spray characteristics, and subsequent flame pattern in an annular combustor". International Journal of Heat and Fluid Flow 98 (dezembro de 2022): 109066. http://dx.doi.org/10.1016/j.ijheatfluidflow.2022.109066.
Texto completo da fonteVinogradov, Viacheslav A., Yurii M. Shikhman e Corin Segal. "A Review of Fuel Pre-injection in Supersonic, Chemically Reacting Flows". Applied Mechanics Reviews 60, n.º 4 (1 de julho de 2007): 139–48. http://dx.doi.org/10.1115/1.2750346.
Texto completo da fonteFriedman, Jacob A., e Metin Renksizbulut. "Investigating a methanol spray flame interacting with an annular air jet using phase-Doppler interferometry and planar laser-induced fluorescence". Combustion and Flame 117, n.º 4 (junho de 1999): 661–84. http://dx.doi.org/10.1016/s0010-2180(98)00136-9.
Texto completo da fonteYang, Jinhu, Cunxi Liu, Fuqiang Liu, Yong Mu e Gang Xu. "The quantitative characterization of the ignition process for a lean staged injector: Influence of the air split between pilot swirlers". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 234, n.º 5 (27 de dezembro de 2019): 1132–45. http://dx.doi.org/10.1177/0954410019896877.
Texto completo da fonteLefebvre, A. H. "The Role of Fuel Preparation in Low-Emission Combustion". Journal of Engineering for Gas Turbines and Power 117, n.º 4 (1 de outubro de 1995): 617–54. http://dx.doi.org/10.1115/1.2815449.
Texto completo da fontePramanik, Santanu, e Achintya Mukhopadhyay. "Numerical Study of Counterflow Diffusion Flame and Water Spray Interaction". Journal of Thermal Science and Engineering Applications 8, n.º 1 (11 de novembro de 2015). http://dx.doi.org/10.1115/1.4030735.
Texto completo da fonteOgawa, Hideyuki, Tomoki Ishikawa, Yoshimitsu Kobashi e Gen Shibata. "Influence of spray-to-spray interaction after wall impingement of spray flames on diesel combustion characteristics". International Journal of Engine Research, 25 de julho de 2024. http://dx.doi.org/10.1177/14680874241260363.
Texto completo da fonteBieber, M., M. Al-Khatib, F. Fröde, H. Pitsch, M. A. Reddemann, H.-J. Schmid, R. Tischendorf e R. Kneer. "Influence of angled dispersion gas on coaxial atomization, spray and flame formation in the context of spray-flame synthesis of nanoparticles". Experiments in Fluids 62, n.º 5 (17 de abril de 2021). http://dx.doi.org/10.1007/s00348-021-03196-6.
Texto completo da fonteZhong, Lijia, Wanhui Zhao, Haiqiao Wei, Gequn Shu e Lei Zhou. "A novel concept of pre-chamber turbulent jet ignition-induced liquid ammonia spray flame". Physics of Fluids 36, n.º 12 (1 de dezembro de 2024). https://doi.org/10.1063/5.0239805.
Texto completo da fonteFan, Chengyuan, Daoyuan Wang, Keiya Nishida e Yoichi Ogata. "Visualization of diesel spray and combustion from lateral side of two-dimensional piston cavity in rapid compression and expansion machine". International Journal of Engine Research, 13 de outubro de 2020, 146808742096229. http://dx.doi.org/10.1177/1468087420962298.
Texto completo da fonte