Artigos de revistas sobre o tema "Flame-shock interaction"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Flame-shock interaction".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Dong, G., B. Fan, M. Gui e B. Li. "Numerical simulations of interactions between a flame bubble with an incident shock wave and its focusing wave". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 223, n.º 10 (29 de junho de 2009): 2357–67. http://dx.doi.org/10.1243/09544062jmes1467.
Texto completo da fonteJu, Yiguang, Akishi Shimano e Osamu Inoue. "Vorticity generation and flame distortion induced by shock flame interaction". Symposium (International) on Combustion 27, n.º 1 (janeiro de 1998): 735–41. http://dx.doi.org/10.1016/s0082-0784(98)80467-0.
Texto completo da fonteLutoschkin, E., M. G. Rose e S. Staudacher. "Pressure-Gain Combustion Using Shock–Flame Interaction". Journal of Propulsion and Power 29, n.º 5 (setembro de 2013): 1181–93. http://dx.doi.org/10.2514/1.b34721.
Texto completo da fonteYarkov, Andrey, Ivan Yakovenko e Alexey Kiverin. "Mechanism of Spontaneous Acceleration of Slow Flame in Channel". Fire 7, n.º 10 (10 de outubro de 2024): 362. http://dx.doi.org/10.3390/fire7100362.
Texto completo da fonteKHOKHLOV, A., E. ORAN, A. CHTCHELKANOVA e J. WHEELER. "Interaction of a shock with a sinusoidally perturbed flame". Combustion and Flame 117, n.º 1-2 (abril de 1999): 99–116. http://dx.doi.org/10.1016/s0010-2180(98)00090-x.
Texto completo da fonteFan, E., Weizong Wang e Tianhan Zhang. "Numerical investigation on flame dynamic and regime transitions during shock-cool flame interaction". Combustion and Flame 273 (março de 2025): 113928. https://doi.org/10.1016/j.combustflame.2024.113928.
Texto completo da fonteThomas, Geraint, Richard Bambrey e Caren Brown. "Experimental observations of flame acceleration and transition to detonation following shock-flame interaction". Combustion Theory and Modelling 5, n.º 4 (dezembro de 2001): 573–94. http://dx.doi.org/10.1088/1364-7830/5/4/304.
Texto completo da fonteRoy, Christopher J., e Jack R. Edwards. "Numerical Simulation of a Three-Dimensional Flame/Shock Wave Interaction". AIAA Journal 38, n.º 5 (maio de 2000): 745–54. http://dx.doi.org/10.2514/2.1035.
Texto completo da fonteIvanov, M. F., e A. D. Kiverin. "Generation of high pressures during the shock wave–flame interaction". High Temperature 53, n.º 5 (setembro de 2015): 668–76. http://dx.doi.org/10.1134/s0018151x15030086.
Texto completo da fonteJohnson, R. G., A. C. McIntosh, J. Brindley, M. R. Booty e M. Short. "Shock wave interaction with a fast convection-reaction driven flame". Symposium (International) on Combustion 26, n.º 1 (janeiro de 1996): 891–98. http://dx.doi.org/10.1016/s0082-0784(96)80299-2.
Texto completo da fonteRoy, Christopher J., e Jack R. Edwards. "Numerical simulation of a three-dimensional flame/shock wave interaction". AIAA Journal 38 (janeiro de 2000): 745–54. http://dx.doi.org/10.2514/3.14476.
Texto completo da fonteYu, Ke, Yong Hu, Chunyan Gao e Yong Jiang. "Investigation into the Suppression Effect of Water Mist on the Self-ignition and Flame Propagation of High-pressure Hydrogen Release". Journal of Physics: Conference Series 2860, n.º 1 (1 de outubro de 2024): 012001. http://dx.doi.org/10.1088/1742-6596/2860/1/012001.
Texto completo da fonteClarke, J. F. "Comment on ‘Experimental observation of flame acceleration and transition to detonation following shock–flame interaction’". Combustion Theory and Modelling 6, n.º 3 (setembro de 2002): 523–25. http://dx.doi.org/10.1088/1364-7830/6/3/401.
Texto completo da fonteIwata, Kazuya, Sou Suzuki, Reo Kai e Ryoichi Kurose. "Direct numerical simulation of detonation–turbulence interaction in hydrogen/oxygen/argon mixtures with a detailed chemistry". Physics of Fluids 35, n.º 4 (abril de 2023): 046107. http://dx.doi.org/10.1063/5.0144624.
Texto completo da fonteHuang, Jin, Xiangyu Gao e Cheng Wang. "Flame acceleration and deflagration-to-detonation transition in narrow channels with thin obstacles". Modern Physics Letters B 32, n.º 29 (20 de outubro de 2018): 1850354. http://dx.doi.org/10.1142/s0217984918503542.
Texto completo da fonteThomas, G. O., R. J. Bambrey e C. J. Brown. "Reply to Comment on ‘Experimental observations of flame acceleration and transition to detonation following shock–flame interaction’". Combustion Theory and Modelling 6, n.º 3 (setembro de 2002): 527–28. http://dx.doi.org/10.1088/1364-7830/6/3/402.
Texto completo da fonteGiannuzzi, P. M., M. J. Hargather e G. C. Doig. "Explosive-driven shock wave and vortex ring interaction with a propane flame". Shock Waves 26, n.º 6 (29 de fevereiro de 2016): 851–57. http://dx.doi.org/10.1007/s00193-016-0627-2.
Texto completo da fonteWei, Haiqiao, Jianfu Zhao, Xiaojun Zhang, Jiaying Pan, Jianxiong Hua e Lei Zhou. "Turbulent flame–shock interaction inducing end-gas autoignition in a confined space". Combustion and Flame 204 (junho de 2019): 137–41. http://dx.doi.org/10.1016/j.combustflame.2019.03.002.
Texto completo da fonteDoig, Graham, Zebulan Johnson e Rachel Mann. "Interaction of shock tube exhaust flow with a non-pre-mixed flame". Journal of Visualization 16, n.º 3 (26 de junho de 2013): 173–76. http://dx.doi.org/10.1007/s12650-013-0166-1.
Texto completo da fonteGui, Mingyue, Baochun Fan, Gang Dong e Jingfang Ye. "Interaction of a reflected shock from a concave wall with a flame distorted by an incident shock". Shock Waves 18, n.º 6 (12 de novembro de 2008): 487–94. http://dx.doi.org/10.1007/s00193-008-0177-3.
Texto completo da fonteWei, Haiqiao, Zailong Xu, Lei Zhou, Dongzhi Gao e Jianfu Zhao. "Effect of initial pressure on flame–shock interaction of hydrogen–air premixed flames". International Journal of Hydrogen Energy 42, n.º 17 (abril de 2017): 12657–68. http://dx.doi.org/10.1016/j.ijhydene.2017.03.099.
Texto completo da fonteMAEDA, Shinichi, Yuki KURAMOCHI, Ryo ONO e Tetsuro OBARA. "Detonation transition process caused by interaction of convex flame with planar shock wave". Transactions of the JSME (in Japanese) 83, n.º 850 (2017): 17–00049. http://dx.doi.org/10.1299/transjsme.17-00049.
Texto completo da fontePicone, J. M., e J. P. Boris. "Vorticity generation by shock propagation through bubbles in a gas". Journal of Fluid Mechanics 189 (abril de 1988): 23–51. http://dx.doi.org/10.1017/s0022112088000904.
Texto completo da fonteЛобода, Е. Л., М. В. Агафонцев e А. А. Старосельцева. "Detonation processes in the combustion front of plant combustible materials". Pozharnaia bezopasnost`, n.º 1(110) (15 de março de 2023): 27–34. http://dx.doi.org/10.37657/vniipo.pb.2023.110.1.002.
Texto completo da fonteGamba, Mirko, e M. Godfrey Mungal. "Ignition, flame structure and near-wall burning in transverse hydrogen jets in supersonic crossflow". Journal of Fluid Mechanics 780 (3 de setembro de 2015): 226–73. http://dx.doi.org/10.1017/jfm.2015.454.
Texto completo da fonteGao Dongzhi, 高东志, 卫海桥 Wei Haiqiao, 周. 磊. Zhou Lei, 刘丽娜 Liu Lina, 赵健福 Zhao Jianfu e 徐在龙 Xu Zailong. "Experimental study of flame-shock wave interaction and cylinder pressure oscillation in confined space". Infrared and Laser Engineering 46, n.º 2 (2017): 239004. http://dx.doi.org/10.3788/irla201746.0239004.
Texto completo da fonteGao Dongzhi, 高东志, 卫海桥 Wei Haiqiao, 周. 磊. Zhou Lei, 刘丽娜 Liu Lina, 赵健福 Zhao Jianfu e 徐在龙 Xu Zailong. "Experimental study of flame-shock wave interaction and cylinder pressure oscillation in confined space". Infrared and Laser Engineering 46, n.º 2 (2017): 239004. http://dx.doi.org/10.3788/irla20174602.239004.
Texto completo da fontePandey, Krishna Murari, e Sukanta Roga. "CFD Analysis of Hypersonic Combustion of H2-Fueled Scramjet Combustor with Cavity Based Fuel Injector at Flight Mach 6". Applied Mechanics and Materials 656 (outubro de 2014): 53–63. http://dx.doi.org/10.4028/www.scientific.net/amm.656.53.
Texto completo da fonteRakotoarison, Willstrong, Andrzej Pekalski e Matei I. Radulescu. "Detonation transition criteria from the interaction of supersonic shock-flame complexes with different shaped obstacles". Journal of Loss Prevention in the Process Industries 64 (março de 2020): 103963. http://dx.doi.org/10.1016/j.jlp.2019.103963.
Texto completo da fonteGoldfeld, Marat, e Alexey Starov. "Scheme of Hydrogen Ignition in Duct with Shock Waves". Siberian Journal of Physics 9, n.º 2 (1 de junho de 2014): 116–27. http://dx.doi.org/10.54362/1818-7919-2014-9-2-116-127.
Texto completo da fonteHora, H., G. H. Miley, K. Flippo, P. Lalousis, R. Castillo, X. Yang, B. Malekynia e M. Ghoranneviss. "Review about acceleration of plasma by nonlinear forces from picoseond laser pulses and block generated fusion flame in uncompressed fuel". Laser and Particle Beams 29, n.º 3 (setembro de 2011): 353–63. http://dx.doi.org/10.1017/s0263034611000413.
Texto completo da fonteGao, Tianyun, Heiko Schmidt, Marten Klein, Jianhan Liang, Mingbo Sun, Chongpei Chen e Qingdi Guan. "One-dimensional turbulence modeling of compressible flows: II. Full compressible modification and application to shock–turbulence interaction". Physics of Fluids 35, n.º 3 (março de 2023): 035116. http://dx.doi.org/10.1063/5.0137435.
Texto completo da fonteXui, Rui, Xing Zheng, Lianjie Yue, Shikong Zhang e Chao Weng. "Study of shock train/flame interaction and skin-friction reduction by hydrogen combustion in compressible boundary layer". International Journal of Hydrogen Energy 45, n.º 31 (junho de 2020): 15683–96. http://dx.doi.org/10.1016/j.ijhydene.2020.04.027.
Texto completo da fonteShao, Haibin, Tingwei Wang e Qitu Zhang. "Ceramifying Fire-Resistant Polyethylene Composites". Advanced Composites Letters 19, n.º 5 (setembro de 2010): 096369351001900. http://dx.doi.org/10.1177/096369351001900501.
Texto completo da fonteLalousis, P., I. B. Földes e H. Hora. "Ultrahigh acceleration of plasma by picosecond terawatt laser pulses for fast ignition of fusion". Laser and Particle Beams 30, n.º 2 (9 de março de 2012): 233–42. http://dx.doi.org/10.1017/s0263034611000875.
Texto completo da fonteLin, Jyh-Woei. "Space Radiation of Solar Storm: A Meeting Report in Taiwan". European Journal of Environment and Earth Sciences 2, n.º 6 (11 de novembro de 2021): 10–11. http://dx.doi.org/10.24018/ejgeo.2021.2.6.202.
Texto completo da fonteKasymov, D., e O. Galtseva. "On the design of some devices for localization and extinguishing wildfires of different intensities". Bulletin of the Karaganda University. "Physics" Series 97, n.º 1 (30 de março de 2020): 115–24. http://dx.doi.org/10.31489/2020ph1/115-124.
Texto completo da fonteKarimi, Abdullah, e M. Razi Nalim. "Ignition by Hot Transient Jets in Confined Mixtures of Gaseous Fuels and Air". Journal of Combustion 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/9565839.
Texto completo da fonteWang, Kan, Yang Liu, Hao Wang, Xiaolei Liu, Yu Jiao e Yujian Wu. "Dynamic Process and Damage Evaluation Subject to Explosion Consequences Resulting from a LPG Tank Trailer Accident". Processes 11, n.º 5 (16 de maio de 2023): 1514. http://dx.doi.org/10.3390/pr11051514.
Texto completo da fonteDOU, HUA-SHU, ZONGMIN HU e BOO CHEONG KHOO. "COMPUTATIONAL STUDY OF DEFLAGRATION TO DETONATION TRANSITION IN A STRAIGHT DUCT: EFFECT OF ENERGY RELEASE". International Journal of Modern Physics: Conference Series 19 (janeiro de 2012): 62–72. http://dx.doi.org/10.1142/s2010194512008598.
Texto completo da fonteDou, Hua-Shu, Zongmin Hu, Boo Cheong Khoo e Zonglin Jiang. "Numerical Simulation of Deflagration to Detonation Transition in a Straight Duct: Effects of Energy Release and Detonation Stability". Advances in Applied Mathematics and Mechanics 6, n.º 06 (dezembro de 2014): 718–31. http://dx.doi.org/10.4208/aamm.2013.m159.
Texto completo da fonteGamezo, Vadim N., Alexei M. Khokhlov e Elaine S. Oran. "The influence of shock bifurcations on shock-flame interactions and DDT". Combustion and Flame 126, n.º 4 (setembro de 2001): 1810–26. http://dx.doi.org/10.1016/s0010-2180(01)00291-7.
Texto completo da fonteCiccarelli, Gaby, Craig T. Johansen e Michael Parravani. "The role of shock–flame interactions on flame acceleration in an obstacle laden channel". Combustion and Flame 157, n.º 11 (novembro de 2010): 2125–36. http://dx.doi.org/10.1016/j.combustflame.2010.05.003.
Texto completo da fonteJiang, Hua, Gang Dong, Xiao chen e Jin-Tao Wu. "Numerical simulations of the process of multiple shock–flame interactions". Acta Mechanica Sinica 32, n.º 4 (27 de abril de 2016): 659–69. http://dx.doi.org/10.1007/s10409-015-0552-0.
Texto completo da fonteКузнецов, А. Е., А. П. Инчиков, Е. А. Соина e Л. А. Орлов. "Procedure for arramgement of fire extinguishing by the units of FPS GPS EMERCOM of Russia at facilities with explosive materials handling". Pozharnaia bezopasnost`, n.º 3(112) (15 de setembro de 2023): 49–53. http://dx.doi.org/10.37657/vniipo.pb.2023.112.3.005.
Texto completo da fonteWang, Dandan, e Gang Dong. "Scalar characterisations of three-dimensional shock-flame interactions: similarity and inhomogeneity". Journal of Turbulence 21, n.º 2 (1 de fevereiro de 2020): 84–105. http://dx.doi.org/10.1080/14685248.2020.1734206.
Texto completo da fonteMassa, L., e P. Jha. "Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions". Physics of Fluids 24, n.º 5 (maio de 2012): 056101. http://dx.doi.org/10.1063/1.4719153.
Texto completo da fonteRI, Zhdanov. "Intestinal Microbiota as a Necessary Basis for Homeostasis, General Pathology, and Ageing, or Back to Elia Metchnikov". Open Access Journal of Microbiology & Biotechnology 7, n.º 3 (4 de julho de 2022): 1–6. http://dx.doi.org/10.23880/oajmb-16000236.
Texto completo da fonteAl-Thehabey, Omar Yousef. "Modeling the amplitude growth of Richtmyer–Meshkov instability in shock–flame interactions". Physics of Fluids 32, n.º 10 (1 de outubro de 2020): 104103. http://dx.doi.org/10.1063/5.0021989.
Texto completo da fonteJohnson, R. G., A. C. McIntosh e X. S. Yang. "Modelling of fast flame–shock wave interactions with a variable piston speed". Combustion Theory and Modelling 7, n.º 1 (março de 2003): 29–44. http://dx.doi.org/10.1088/1364-7830/7/1/302.
Texto completo da fonte