Literatura científica selecionada sobre o tema "Fission pathways"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Fission pathways".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Fission pathways"
Cansado, José, Teresa Soto, Alejandro Franco, Jero Vicente-Soler e Marisa Madrid. "The Fission Yeast Cell Integrity Pathway: A Functional Hub for Cell Survival upon Stress and Beyond". Journal of Fungi 8, n.º 1 (30 de dezembro de 2021): 32. http://dx.doi.org/10.3390/jof8010032.
Texto completo da fonteHernáez, M. J., E. Andújar, J. L. Ríos, S. R. Kaschabek, W. Reineke e E. Santero. "Identification of a Serine Hydrolase Which Cleaves the Alicyclic Ring of Tetralin". Journal of Bacteriology 182, n.º 19 (1 de outubro de 2000): 5448–53. http://dx.doi.org/10.1128/jb.182.19.5448-5453.2000.
Texto completo da fonteBaldacchino, Alexander J., Miles I. Collins, Michael P. Nielsen, Timothy W. Schmidt, Dane R. McCamey e Murad J. Y. Tayebjee. "Singlet fission photovoltaics: Progress and promising pathways". Chemical Physics Reviews 3, n.º 2 (junho de 2022): 021304. http://dx.doi.org/10.1063/5.0080250.
Texto completo da fonteStiefel, Jeffrey, Lili Wang, David A. Kelly, Rozmin T. K. Janoo, Jeffrey Seitz, Simon K. Whitehall e Charles S. Hoffman. "Suppressors of an Adenylate Cyclase Deletion in the Fission Yeast Schizosaccharomyces pombe". Eukaryotic Cell 3, n.º 3 (junho de 2004): 610–19. http://dx.doi.org/10.1128/ec.3.3.610-619.2004.
Texto completo da fonteMorandini, André C., Sérgio N. Stampar, Alvaro E. Migotto e Antonio C. Marques. "Hydrocoryne iemanja (Cnidaria), a new species of Hydrozoa with unusual mode of asexual reproduction". Journal of the Marine Biological Association of the United Kingdom 89, n.º 1 (fevereiro de 2009): 67–76. http://dx.doi.org/10.1017/s0025315408002968.
Texto completo da fonteLi, Haijun, Fucheng He, Xin Zhao, Yuan Zhang, Xi Chu, Chunlan Hua, Yunhui Qu, Yu Duan e Liang Ming. "YAP Inhibits the Apoptosis and Migration of Human Rectal Cancer Cells via Suppression of JNK-Drp1-Mitochondrial Fission-HtrA2/Omi Pathways". Cellular Physiology and Biochemistry 44, n.º 5 (2017): 2073–89. http://dx.doi.org/10.1159/000485946.
Texto completo da fonteZhang, Hanwen, Yanshuo Ye e Wei Li. "Perspectives of Molecular Therapy-Targeted Mitochondrial Fission in Hepatocellular Carcinoma". BioMed Research International 2020 (29 de dezembro de 2020): 1–7. http://dx.doi.org/10.1155/2020/1039312.
Texto completo da fonteHayashi, Yukimasa, Chiaki W. Nakagawa, Norihiro Mutoh, Minoru Isobe e Toshio Goto. "Two pathways in the biosynthesis of cadystins (γEC)nG in the cell-free system of the fission yeast". Biochemistry and Cell Biology 69, n.º 2-3 (1 de fevereiro de 1991): 115–21. http://dx.doi.org/10.1139/o91-018.
Texto completo da fontePapadakis, Manos A., e Christopher T. Workman. "Oxidative stress response pathways: Fission yeast as archetype". Critical Reviews in Microbiology 41, n.º 4 (2 de outubro de 2015): 520–35. http://dx.doi.org/10.3109/1040841x.2013.870968.
Texto completo da fonteXu, Dan-Dan, e Li-Lin Du. "Fission Yeast Autophagy Machinery". Cells 11, n.º 7 (24 de março de 2022): 1086. http://dx.doi.org/10.3390/cells11071086.
Texto completo da fonteTeses / dissertações sobre o assunto "Fission pathways"
Pazo, Pelegrí Esther 1993. "New pathways regulating MBF-dependent transcription in fission yeast". Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2021. http://hdl.handle.net/10803/672476.
Texto completo da fonteAl final de la fase G1, les cèl·lules han de decidir entre continuar proliferant o romandre en un estat de quiescència (G0). Aquest punt de decisió, conegut com “Start” en llevats o “Restriction Point” en metazous, compromet irreversiblement a les cèl·lules a completar el següent cicle cel·lular, i està principalment regulat per l’activitat CDK de G1 i per la inducció del programa transcripcional de G1/S. El complex MBF (homòleg funcional de pRB-E2F en metazous) es el factor de transcripció encarregat de la inducció de l’onada transcripcional de G1/S en el llevat de fissió Schizosaccharomyces pombe. Anteriorment, vam descriure com els repressors Nrm1 i Yox1 s’uneixen al complex MBF al final de la fase S per inhibir la seva activitat. Fins ara, els mecanismes implicats en l’activació de MBF a l’inici d’un cicle cel·lular no pertorbat s’han mantingut desconeguts. En aquest treball, hem vist que Nrm1 es el responsable de l’activació transcripcional depenent de MBF mitjançant un mecanisme de dos passos. La seva fosforilació per CDK1 i la seva posterior degradació per APCSte9 donen lloc a l’activació irreversible de MBF fins al final de la fase S. També hem estudiant el paper dels remodeladors de cromatina en el control del programa transcripcional de G1/S. En aquest sentit, hem trobat que els complexes remodeladors de la cromatina SWI/SNF i RSC són reclutats als gens regulats per MBF i tenen un clar impacte en l’activació transcripcional de G1/S. A més, hem creat un reporter fluorescent de vida curta per mesurar canvis petits i transitoris de l’activitat MBF in vivo mitjançant citometria de flux, per a poder identificar nous reguladors de MBF.
Mutavchiev, Delyan Rumenov. "Regulation of fission yeast cell polarity by stress-response pathways". Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/29006.
Texto completo da fonteRoberts, Theresa Helen. "The role of Ypt3p in the membrane traffic pathways of Schizosaccharomyces pombe". Thesis, University of Sussex, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321487.
Texto completo da fonteMakarenko, Rostyslav. ""Adaptive mutations" in the S/MAPK pathways provide selective advantage in quiescent fission yeast". Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS253.pdf.
Texto completo da fonteQuiescence and proliferation reflect two fundamentally different cellular stages, yet very limited information exists on how cells maintain their genome stability in quiescence. Using nitrogen-starved fission yeast as a model for quiescence, our laboratory has demonstrated that cells are not only subject to DNA damage in G0 but also accumulate replication-independent mutations linearly with time. In our current work, we have demonstrated that mutations accumulating in growth-arrested phase undergo a selection process in quiescence similar to that observed in E. coli. Selection favors mutations that affect functions of the genes of the MAP-kinase (mkh1, pek1, pmk1) and SAP-kinase pathways (win1, wis1, sty1), and their downstream targets (pmc1, sgf73, tif452). These genes represent core cellular signaling that regulates cell proliferation, cell differentiation, and cell death conserved among all eukaryotic species from yeast to human. Mutations in components of the S/MAPK pathways and their regulators are associated with multiple diseases in humans, primary cancer and degenerative neuronal death accumulated with ageing. In this work, we have demonstrated that wild-type cells dying in quiescence release traces of nitrogen that triggers the viable population to exit from quiescence. The wild-type cells are dying during their entry into S-phase releasing more nitrogen. Thus, mutants in the S/MAPK pathways are better scavengers and selection in quiescence is characterized by the ability of the mutant to resume cycling in quiescence coupled with a resistance to programed cell death
Sacks, Jessica Erin. "Targeting Mitochondrial Pathways in Obesity and Type 2 Diabetes". Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1522935947635474.
Texto completo da fonteGabrielli, Natalia 1978. "Cross-talk between iron starvation and H202 signaling pathways in Schizosaccharomyces pombe". Doctoral thesis, Universitat Pompeu Fabra, 2012. http://hdl.handle.net/10803/108037.
Texto completo da fonteEl peróxido de hidrógeno (H2O2) es un agente oxidante que además de participar en cascadas de señalización produce toxicidad por daño oxidativo. Parte de su toxicidad se explica por su reactividad con hierro. Así, las concentraciones de hierro en el interior celular han de estar estrictamente reguladas. Usando la levadura de fisión, Schizosaccharomyces pombe, como un sistema modelo, estudiamos las relaciones entre H2O2 y el sistema de respuesta a déficit de hierro. Genes como fep1, pcl1 y sib2, importantes para mantener su homeostasis, fueron encontrados en un análisis de 2700 mutantes de S. pombe, tras tratamiento con diferentes agentes oxidantes. Inesperadamente encontramos que H2O2 desencadena una respuesta transcripcional de déficit de hierro, incluyendo aumento de su entrada y disminución de su consumo. Ésta es una respuesta accidental debido a la sobreexpresión de proteínas como catalasa, una hemoproteína, consumidoras masivas de hierro. Encontramos además que la glutaredoxina Grx4 contiene un clúster de hierro-azufre implicado en sensar hierro. Finalmente, identificamos, caracterizamos y delecionamos el homólogo de frataxina en S. pombe, pfh1. Deficiencias en frataxina provocan ataxia de Friedreich. Los mecanismos por los cuales se desencadena esta enfermedad están todavía por elucidar, pero S. pombe es un buen sistema modelo para su estudio.
Gupta, Sneha. "Understanding Regulation of the Cytoskeleton during Cell Cycle Transitions through Examination of Crosstalk between Homologous Fission Yeast Pathways, Septation Initiation Network and Morphogenesis ORB6 Network: A Dissertation". eScholarship@UMMS, 2013. http://escholarship.umassmed.edu/gsbs_diss/693.
Texto completo da fonteRavenel, Kévin. "Étude des mécanismes d’adaptation des espèces du genre Scedosporium aux environnements pollués et pathogénie". Electronic Thesis or Diss., Angers, 2024. https://dune.univ-angers.fr/documents/dune18768.
Texto completo da fonteFungi of the Scedosporium genus are saprophytes, opportunistic pathogens in humans. Several studies have revealed their ability to degrade polyaromatic molecules derived from environmental pollutants. Our previous work demonstrates that species of the genus Scedosporium are able to grow in the presence of lignin. In the environment, the catabolic steps of polyaromatic molecules converge on a limited number of simple aromatic molecules (catechol, protocatechuate, hydroxyquinol and gentisate), which are handled by central intermediate pathways, also known as fission pathways. Bioinformatics analysis enabled us to characterize the gene clusters degrading these central molecules in S. apiospermum and S. aurantiacum. Experimental results demonstrate the functionality of the gentisate pathway cluster in the presence of this molecule. The dioxygenases that catalyze benzene ring opening, a key step in the catabolic mechanism, are prime targets for the design of deletion strains.To this end, CRISPR-Cas9 technology has been successfully adapted and optimized in two S. apiospermum strains: a wild-type strain and a Δku70strain. To achieve this, different protocols were defined depending on the functionality of the NHEJ repair system. Thus, deletion strains for the gene encoding dioxygenase were generated for each pathway. These deletions have a different impact on the growth of these strains on media in the presence of the corresponding core molecules. Under certain conditions, these results suggest the implementation of compensatory mechanisms that remain to be defined. Finally, this work established for the first time a link between the degradation of aromatic molecules and the pathogenesis of an opportunistic fungal pathogen of man in in vitro experiments
Didmon, Mark Paul. "Characterisation of adaption mechanisms in the intracellular signalling pathway of the Schizosaccharomyces pombe pheromone communication system". Thesis, University of Warwick, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367965.
Texto completo da fonteWilkinson, Marc George. "Functional analysis of the STY1 stress-activated map kinase pathway of fission yeast". Thesis, University College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286786.
Texto completo da fonteLivros sobre o assunto "Fission pathways"
Bassil, Nicholas. Molecular characterisation of the endocytic pathway using the fission yeast Schizosaccaromyces pombe. Birmingham: University of Birmingham, 1991.
Encontre o texto completo da fonteUnited States. Congress. House. Committee on Homeland Security. Subcommittee on the Prevention of Nuclear and Biological Attack. Pathways to the bomb: Security of fissile materials abroad : hearing before the Subcommittee on [the] Prevention of Nuclear and Biological Attack of the Committee on Homeland Security, House of Representatives, One Hundred Ninth Congress, first session, June 28, 2005. Washington: U.S. G.P.O., 2006.
Encontre o texto completo da fonteCongress, United St, United States House of Representatives e Committee on Homeland Security and Export Controls. Pathways to the Bomb: Security of Fissile Materials Abroad. Independently Published, 2019.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Fission pathways"
Hughes, David A., Yoshiyuki Imai e Masayuki Yamamoto. "Regulation of the ras Pathway in the Fission Yeast Schizosaccharomyces Pombe". In The Superfamily of ras-Related Genes, 41–47. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-6018-6_5.
Texto completo da fontede Medeiros, Ana Santos, Grace Kwak, Jordan Vanderhooft, Sam Rivera, Rachel Gottlieb e Charles S. Hoffman. "Fission Yeast-Based High-Throughput Screens for PKA Pathway Inhibitors and Activators". In Methods in Molecular Biology, 77–91. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2269-7_6.
Texto completo da fonteIon, Sue. "Nuclear fission". In Energy... beyond oil. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780199209965.003.0008.
Texto completo da fonteBÄHler, JÜrg, e Matthias Peter. "Cell polarity in yeast". In Cell Polarity, 21–77. Oxford University PressOxford, 2000. http://dx.doi.org/10.1093/oso/9780199638031.003.0002.
Texto completo da fonte"4. Stress-activated MAP kinase (mitogen-activated protein kinase) pathways of budding and fission yeasts". In Cellular Responses to Stress, 49–62. Princeton University Press, 1999. http://dx.doi.org/10.1515/9781400865048.49.
Texto completo da fonteOxford, John, Paul Kellam e Leslie Collier. "Viral replication and genetics". In Human Virology. Oxford University Press, 2016. http://dx.doi.org/10.1093/hesc/9780198714682.003.0003.
Texto completo da fonteLata, Dr Suman, Mr Gagandeep e Hardeep Kaur. "RADIOCHEMISTRY". In Futuristic Trends in Pharmacy & Nursing Volume 3 Book 19, 23–28. Iterative International Publisher, Selfypage Developers Pvt Ltd, 2024. http://dx.doi.org/10.58532/v3bgpn19p1ch3.
Texto completo da fonteScharbaai-Vázquez, Ramón, Francisco J. López Font e Félix A. Zayas Rodríguez. "Persistence in Chlamydia". In Infectious Diseases. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.109299.
Texto completo da fonteHagan, Iain M., e Kathryn R. Ayscough. "Fluorescence microscopy in yeast". In Protein localization by fluorescence microscopy, 179–206. Oxford University PressOxford, 1999. http://dx.doi.org/10.1093/oso/9780199637416.003.0008.
Texto completo da fonteArmstrong, John, Erica Fawell e Alison Pidoux. "Intracellular trafficking in fission yeast". In Protein Targeting, 87–111. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780199632060.003.0004.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Fission pathways"
McDonnell, J. D., W. Nazarewicz, J. A. Sheikh, Audrey Chatillon, Herbert Faust, Gabriele Fioni, Dominique Goutte e Héloise Goutte. "Thermal fission pathways in [sup 232]Th". In 4TH INTERNATIONAL WORKSHOP ON NUCLEAR FISSION AND FISSION-PRODUCT SPECTROSCOPY. AIP, 2009. http://dx.doi.org/10.1063/1.3258254.
Texto completo da fonteCizek, J., J. Klecka, L. Babka, H. Hadraba, J. Kondas, R. Singh e M. Pazderova. "Protective Mo and Fe Coatings by CS and RF-ICP for PbLi Coolant Environments in Generation IV Fission Reactors". In ITSC2022. DVS Media GmbH, 2022. http://dx.doi.org/10.31399/asm.cp.itsc2022p0780.
Texto completo da fonteMayonado, Gina, Fangyi Zhu, Winston Goldthwaite, Liangdong Zhu, John E. Anthony, Oksana Ostroverkhova e Matt W. Graham. "Optomagneto control of singlet fission charge multiplication dynamics in single organic semiconductor crystals". In CLEO: Fundamental Science. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_fs.2023.ff2g.4.
Texto completo da fonteRelatórios de organizações sobre o assunto "Fission pathways"
Hughes, Joseph B. Novel Pathways of Nitroaromatic Metabolism: Hydroxylamine Formation, Reactivity and Potential for Ring Fission for Destruction of TNT-CU1214. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2005. http://dx.doi.org/10.21236/ada462163.
Texto completo da fonteFaye, S. A., e D. A. Shaughnessy. Production Pathways and Separation Procedures for High-Diagnostic-Value Activation Species, Fission Products, and Actinides Required for Preparation of Realistic Synthetic Post-Detonation Nuclear Debris: Status Report and FY16 Project Plan. Office of Scientific and Technical Information (OSTI), agosto de 2015. http://dx.doi.org/10.2172/1233304.
Texto completo da fonteMatsumoto, Tomohiro. Fission Yeast Model Study for Dissection of TSC Pathway. Fort Belvoir, VA: Defense Technical Information Center, abril de 2010. http://dx.doi.org/10.21236/ada560751.
Texto completo da fonteKadura, Sheila, e Shelley Sazar. Identification and Characterization of Components of the Mitotic Spindle Checkpoint Pathway Using Fission Yeast. Fort Belvoir, VA: Defense Technical Information Center, julho de 2002. http://dx.doi.org/10.21236/ada408789.
Texto completo da fonteKadura, Sheila, e Shelly Sazer. Identification and Characterization of Components of the Mitotic Spindle Checkpoint Pathway in Fission Yeast. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2003. http://dx.doi.org/10.21236/ada421768.
Texto completo da fonte