Siga este link para ver outros tipos de publicações sobre o tema: Finite-Temperature properties.

Artigos de revistas sobre o tema "Finite-Temperature properties"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Finite-Temperature properties".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Ishii, Noriyoshi, Hideo Suganuma e Hideo Matsufuru. "Glueball properties at finite temperature". Nuclear Physics B - Proceedings Supplements 106-107 (março de 2002): 516–18. http://dx.doi.org/10.1016/s0920-5632(01)01765-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Drabold, David A., P. A. Fedders, Stefan Klemm e Otto F. Sankey. "Finite-temperature properties of amorphous silicon". Physical Review Letters 67, n.º 16 (14 de outubro de 1991): 2179–82. http://dx.doi.org/10.1103/physrevlett.67.2179.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Seibert, David, e Charles Gale. "Measuring hadron properties at finite temperature". Physical Review C 52, n.º 2 (1 de agosto de 1995): R490—R494. http://dx.doi.org/10.1103/physrevc.52.r490.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Jaklič, J., e P. Prelovšek. "Finite-temperature properties of doped antiferromagnets". Advances in Physics 49, n.º 1 (janeiro de 2000): 1–92. http://dx.doi.org/10.1080/000187300243381.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Liu, Hanbin, e Kenneth D. Jordan. "Finite Temperature Properties of (CO2)nClusters". Journal of Physical Chemistry A 107, n.º 30 (julho de 2003): 5703–9. http://dx.doi.org/10.1021/jp0345295.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

HAN, FUXIANG, e YONGMEI ZHANG. "FINITE TEMPERATURE PROPERTIES OF OPTICAL LATTICES". International Journal of Modern Physics B 19, n.º 31 (20 de dezembro de 2005): 4567–86. http://dx.doi.org/10.1142/s0217979205032942.

Texto completo da fonte
Resumo:
Within a mean-field treatment of the Bose–Hubbard model for an optical lattice, we have derived a self-consistent equation for the order parameter of possible phases in the optical lattice at finite temperatures. From the solutions to the self-consistent equation, we have inferred the temperature dependence of the order parameter and transition temperatures of Mott-insulator and superfluid phases into the normal phase. The condensation fraction in the superfluid phase has been deduced from the one-body density matrix and its temperature dependence has been given. In terms of the normalized correlation function of quasiparticles, strong coherence in the superfluid phase and its loss in Mott-insulator phases are demonstrated.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Ju, Nengjiu, e Aurel Bulgac. "Finite-temperature properties of sodium clusters". Physical Review B 48, n.º 4 (15 de julho de 1993): 2721–32. http://dx.doi.org/10.1103/physrevb.48.2721.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Wu, K. L., S. K. Lai e W. D. Lin. "Finite temperature properties for zinc nanoclusters". Molecular Simulation 31, n.º 6-7 (maio de 2005): 399–403. http://dx.doi.org/10.1080/08927020412331332749.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

de Oliveira, N. A., e A. A. Gomes. "Laves phase pseudobinaries: finite temperature properties". Journal of Magnetism and Magnetic Materials 117, n.º 1-2 (novembro de 1992): 169–74. http://dx.doi.org/10.1016/0304-8853(92)90307-a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Yang, Jie, Jue-lian Shen e Hai-qing Lin. "Finite Temperature Properties of The FrustratedJ1-J2Model". Journal of the Physical Society of Japan 68, n.º 7 (15 de julho de 1999): 2384–89. http://dx.doi.org/10.1143/jpsj.68.2384.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Kumar, Priyank, N. K. Bhatt, P. R. Vyas e V. B. Gohel. "Thermophysical properties of iridium at finite temperature". Chinese Physics B 25, n.º 11 (novembro de 2016): 116401. http://dx.doi.org/10.1088/1674-1056/25/11/116401.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Bhatt, N. K., P. R. Vyas, V. B. Gohel e A. R. Jani. "Finite-temperature thermophysical properties of fcc-Ca". European Physical Journal B 58, n.º 1 (julho de 2007): 61–68. http://dx.doi.org/10.1140/epjb/e2007-00196-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Brunet, L. G., R. M. Ribeiro-Teixeira e J. R. Iglesias. "FINITE TEMPERATURE PROPERTIES OF THE ANDERSON LATTICE". Le Journal de Physique Colloques 49, n.º C8 (dezembro de 1988): C8–697—C8–698. http://dx.doi.org/10.1051/jphyscol:19888315.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Horwitz, G., e G. Kalbermann. "Properties of a finite-temperature supersymmetric ensemble". Physical Review D 38, n.º 2 (15 de julho de 1988): 714–17. http://dx.doi.org/10.1103/physrevd.38.714.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

PASSAMANI, TOMAZ, e MARIA LUIZA CESCATO. "HOT NUCLEAR MATTER PROPERTIES". International Journal of Modern Physics E 16, n.º 09 (outubro de 2007): 3041–44. http://dx.doi.org/10.1142/s0218301307009002.

Texto completo da fonte
Resumo:
The nuclear matter at finite temperature is described in the relativistic mean field theory using linear and nonlinear interactions. The behavior of effective nucleon mass with temperature was numerically calculated. For the nonlinear NL3 interaction we also observed the striking decrease at temperatures well below the nucleon mass. The calculation of NL3 nuclear matter equation of state at finite temperature is still on progress.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

DUNNE, GERALD V. "FINITE TEMPERATURE INDUCED FERMION NUMBER". International Journal of Modern Physics A 17, n.º 06n07 (20 de março de 2002): 890–97. http://dx.doi.org/10.1142/s0217751x02010273.

Texto completo da fonte
Resumo:
The induced fermion number at zero temperature is topological (in the sense that it is only sensitive to global asymptotic properties of the background field), and is a sharp observable (in the sense that it has vanishing rms fluctuations). At finite temperature, it is shown to be generically nontopological, and it is not a sharp observable.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

ITO, IKUO, e TADASHI KON. "THERMAL PROPERTIES OF PARASUPERSYMMETRIC OSCILLATOR". International Journal of Modern Physics A 07, n.º 17 (10 de julho de 1992): 3997–4014. http://dx.doi.org/10.1142/s0217751x92001782.

Texto completo da fonte
Resumo:
Parasupersymmetric oscillator model of one bosonic and one order p parafermionic degrees of freedom at finite temperature is investigated in the framework of Thermo Field Dynamics (TFD). The temperature dependent vacuum |O(β)> is constructed and the generator of thermal unitary transformation |O(β)>=e−iG(β)|O> is obtained. We also comment on a signal of the parasuper-symmetry breaking at finite temperature.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Shinozaki, Misako, Shintaro Hoshino, Yusuke Masaki, Jun-ichiro Kishine e Yusuke Kato. "Finite-Temperature Properties of Three-Dimensional Chiral Helimagnets". Journal of the Physical Society of Japan 85, n.º 7 (15 de julho de 2016): 074710. http://dx.doi.org/10.7566/jpsj.85.074710.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Yoshimi, Kazuyoshi, Makoto Naka e Hitoshi Seo. "Finite Temperature Properties of Geometrically Charge Frustrated Systems". Journal of the Physical Society of Japan 89, n.º 3 (15 de março de 2020): 034003. http://dx.doi.org/10.7566/jpsj.89.034003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

LeSar, R., R. Najafabadi e D. J. Srolovitz. "Finite-temperature defect properties from free-energy minimization". Physical Review Letters 63, n.º 6 (7 de agosto de 1989): 624–27. http://dx.doi.org/10.1103/physrevlett.63.624.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Ibarra, J. R. Morones, A. J. Garza Aguirre e Francisco V. Flores-Baez. "Properties of the sigma meson at finite temperature". International Journal of Modern Physics A 30, n.º 35 (20 de dezembro de 2015): 1550214. http://dx.doi.org/10.1142/s0217751x15502140.

Texto completo da fonte
Resumo:
We study the changes of the mass and width of the sigma meson in the framework of the Linear Sigma Model at finite temperature, in the one-loop approximation. We have found that as the temperature increases, the mass of sigma shifts down. We have also analyzed the [Formula: see text]-spectral function and we observe an enhancement at the threshold which is a signature of partial restoration of chiral symmetry, also interpreted as a tendency to chiral phase transition. Additionally, we studied the width of the sigma, when the threshold enhancement takes place, for different values of the sigma mass. We found that there is a brief enlargement followed by an abrupt fall in the width as the temperature increases, which is also related with the restoration of chiral symmetry and an indication that the sigma is a bound state of two pions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

López-Urı́as, F., G. M. Pastor e K. H. Bennemann. "Calculation of finite temperature magnetic properties of clusters". Journal of Applied Physics 87, n.º 9 (maio de 2000): 4909–11. http://dx.doi.org/10.1063/1.373199.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Haglin, Kevin L., e Charles Gale. "Properties of the φ-meson at finite temperature". Nuclear Physics B 421, n.º 3 (junho de 1994): 613–31. http://dx.doi.org/10.1016/0550-3213(94)90519-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Hasegawa, H. "Finite-temperature surface properties of itinerant-electron ferromagnets". Journal of Physics F: Metal Physics 16, n.º 3 (março de 1986): 347–64. http://dx.doi.org/10.1088/0305-4608/16/3/013.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Kucharek, H., P. Ring e P. Schuck. "Pairing properties of nuclear matter at finite temperature". Zeitschrift f�r Physik A Atomic Nuclei 334, n.º 2 (junho de 1989): 119–24. http://dx.doi.org/10.1007/bf01294212.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Baranov, M. A., V. S. Gorbachev e A. V. Senatorov. "Properties of the Josephson medium at finite temperature". Physica C: Superconductivity 179, n.º 1-3 (agosto de 1991): 52–58. http://dx.doi.org/10.1016/0921-4534(91)90010-v.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Sun, Z., e J. H. Hetherington. "Magnetic properties of solid 3He at finite temperature". Journal of Low Temperature Physics 86, n.º 5-6 (março de 1992): 303–9. http://dx.doi.org/10.1007/bf00121500.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Lutz, M., S. Klimt e W. Weise. "Meson properties at finite temperature and baryon density". Nuclear Physics A 542, n.º 4 (junho de 1992): 521–58. http://dx.doi.org/10.1016/0375-9474(92)90256-j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Jaklic, J., e P. Prelovsek. "ChemInform Abstract: Finite-Temperature Properties of Doped Antiferromagnets". ChemInform 31, n.º 42 (17 de outubro de 2000): no. http://dx.doi.org/10.1002/chin.200042249.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Spínola, Miguel, Shashank Saxena, Prateek Gupta, Brandon Runnels e Dennis M. Kochmann. "Finite-temperature grain boundary properties from quasistatic atomistics". Computational Materials Science 244 (setembro de 2024): 113270. http://dx.doi.org/10.1016/j.commatsci.2024.113270.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Frick, M., e T. Schneider. "On the theory of layered high-temperature superconductors: Finite temperature properties". Zeitschrift f�r Physik B Condensed Matter 78, n.º 2 (junho de 1990): 159–68. http://dx.doi.org/10.1007/bf01307831.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Iwasaki, Y., K. Kanaya, S. Sakai e T. Yoshié. "Chiral properties of dynamical Wilson quarks at finite temperature". Physical Review Letters 67, n.º 12 (16 de setembro de 1991): 1494–97. http://dx.doi.org/10.1103/physrevlett.67.1494.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Stoffel, A. J., e M. Gulácsi. "Finite temperature properties of a supersolid: a RPA approach". European Physical Journal B 67, n.º 2 (janeiro de 2009): 169–81. http://dx.doi.org/10.1140/epjb/e2009-00018-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Lesar, R., e J. M. Rickman. "Finite-temperature properties of materials from analytical statistical mechanics". Philosophical Magazine B 73, n.º 4 (abril de 1996): 627–39. http://dx.doi.org/10.1080/13642819608239140.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Umeda, Takashi, e Hideo Matsufuru. "Charmonium properties at finite temperature on quenched anisotropic lattices". Nuclear Physics B - Proceedings Supplements 140 (março de 2005): 547–49. http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.250.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Caldas, A., P. J. von Ranke e N. A. de Oliveira. "Finite temperature magnetic properties of the PrCo2 intermetallic compound". Physica B: Condensed Matter 253, n.º 1-2 (outubro de 1998): 158–62. http://dx.doi.org/10.1016/s0921-4526(98)00055-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Rosenstein, B., A. D. Speliotopoulos e H. L. Yu. "Some properties of the finite temperature chiral phase transition". Physical Review D 49, n.º 12 (15 de junho de 1994): 6822–28. http://dx.doi.org/10.1103/physrevd.49.6822.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Craco, Luis. "Finite-temperature properties of the two-orbital Anderson model". Journal of Physics: Condensed Matter 11, n.º 44 (20 de outubro de 1999): 8689–95. http://dx.doi.org/10.1088/0953-8984/11/44/307.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Borisenko, O., V. Petrov e G. Zinovjev. "Confining properties of noncompact gauge theories at finite temperature". Nuclear Physics B - Proceedings Supplements 42, n.º 1-3 (abril de 1995): 466–68. http://dx.doi.org/10.1016/0920-5632(95)00281-d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Shu, Song, e Jia-Rong Li. "Studying the baryon properties through chiral soliton model at finite temperature and density". International Journal of Modern Physics: Conference Series 29 (janeiro de 2014): 1460213. http://dx.doi.org/10.1142/s2010194514602130.

Texto completo da fonte
Resumo:
We have studied the chiral soliton model in a thermal vacuum. The soliton equations are solved at finite temperature and density. The temperature or density dependent soliton solutions are presented. The physical properties of baryons are derived from the soliton solutions at finite temperature and density. The temperature or density dependent variation of the baryon properties are discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

MENEZES, DÉBORA P., e C. PROVIDÊNCIA. "FINITE TEMPERATURE EQUATIONS OF STATE FOR MIXED STARS". International Journal of Modern Physics D 13, n.º 07 (agosto de 2004): 1249–53. http://dx.doi.org/10.1142/s0218271804005389.

Texto completo da fonte
Resumo:
We investigate the properties of mixed stars formed by hadronic and quark matter in β-equilibrium described by appropriate equations of state (EOS) in the framework of relativistic mean-field theory. The calculations were performed for T=0 and for finite temperatures and also for fixed entropies with and without neutrino trapping in order to describe neutron and proto-neutron stars. The star properties are discussed. Maximum allowed masses for proto-neutron stars are much larger when neutrino trapping is imposed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Teo, Lee Peng. "Dispersive Correction to Casimir Force at Finite Temperature". Applied Mechanics and Materials 110-116 (outubro de 2011): 465–71. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.465.

Texto completo da fonte
Resumo:
We study the dispersive correction to the finite temperature Casimir force acting on a pair of plates immersed in a magnetodielectric medium. We consider the case where both the plates are perfectly conducting and the case where one plate is perfectly conducting and one plate is infinitely permeable. Although the sign and the strength of the Casimir force depend strongly on the properties of the plates, it is found that in the high temperature regime, the Casimir force has a classical limit that does not depend on the properties of the medium separating the plates.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Rickman, J. M., R. Najafabadi, L. Zhao e D. J. Srolovitz. "Finite-temperature properties of perfect crystals and defects from zero-temperature energy minimization". Journal of Physics: Condensed Matter 4, n.º 21 (25 de maio de 1992): 4923–34. http://dx.doi.org/10.1088/0953-8984/4/21/008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Apalowo, RK, D. Chronopoulos, M. Ichchou, Y. Essa e F. Martin De La Escalera. "The impact of temperature on wave interaction with damage in composite structures". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231, n.º 16 (agosto de 2017): 3042–56. http://dx.doi.org/10.1177/0954406217718217.

Texto completo da fonte
Resumo:
The increased use of composite materials in modern aerospace and automotive structures, and the broad range of launch vehicles’ operating temperature imply a great temperature range for which the structures has to be frequently and thoroughly inspected. A thermal mechanical analysis is used to experimentally measure the temperature-dependent mechanical properties of a composite layered panel in the range of −100 ℃ to 150 ℃. A hybrid wave finite element/finite element computational scheme is developed to calculate the temperature-dependent wave propagation and interaction properties of a system of two structural waveguides connected through a coupling joint. Calculations are made using the measured thermomechanical properties. Temperature-dependent wave propagation constants of each structural waveguide are obtained by the wave finite element approach and then coupled to the fully finite element described coupling joint, on which damage is modelled, in order to calculate the scattering magnitudes of the waves interaction with damage across the coupling joint. The significance of the panel’s glass transition range on the measured and calculated properties is emphasised. Numerical results are presented as illustration of the work.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Fantoni, Riccardo. "One-component fermion plasma on a sphere at finite temperature". International Journal of Modern Physics C 29, n.º 08 (agosto de 2018): 1850064. http://dx.doi.org/10.1142/s012918311850064x.

Texto completo da fonte
Resumo:
We study through a computer experiment, using the restricted path integral Monte Carlo method, a one-component fermion plasma on a sphere at finite, nonzero, temperature. We extract thermodynamic properties like the kinetic and internal energy per particle and structural properties like the radial distribution function. This study could be relevant for the characterization and better understanding of the electronic properties of hollow graphene spheres.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Feuston, Bradley P., Wanda Andreoni, Michele Parrinello e Enrico Clementi. "Electronic and vibrational properties ofC60at finite temperature fromab initiomolecular dynamics". Physical Review B 44, n.º 8 (15 de agosto de 1991): 4056–59. http://dx.doi.org/10.1103/physrevb.44.4056.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Koskinen, P., M. Koskinen e M. Manninen. "Low-energy spectrum and finite temperature properties of quantum rings". European Physical Journal B 28, n.º 4 (agosto de 2002): 483–89. http://dx.doi.org/10.1140/epjb/e2002-00251-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Lopez-Arias, Teresa, e Augusto Smerzi. "Kinetic properties of a Bose-Einstein gas at finite temperature". Physical Review A 58, n.º 1 (1 de julho de 1998): 526–30. http://dx.doi.org/10.1103/physreva.58.526.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Goedecker, S. "Decay properties of the finite-temperature density matrix in metals". Physical Review B 58, n.º 7 (15 de agosto de 1998): 3501–2. http://dx.doi.org/10.1103/physrevb.58.3501.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Haule, K., J. Bonča e P. Prelovšek. "Finite-temperature properties of the two-dimensional Kondo lattice model". Physical Review B 61, n.º 4 (15 de janeiro de 2000): 2482–87. http://dx.doi.org/10.1103/physrevb.61.2482.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia