Literatura científica selecionada sobre o tema "Finite-Temperature properties"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Finite-Temperature properties".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Finite-Temperature properties"
Ishii, Noriyoshi, Hideo Suganuma e Hideo Matsufuru. "Glueball properties at finite temperature". Nuclear Physics B - Proceedings Supplements 106-107 (março de 2002): 516–18. http://dx.doi.org/10.1016/s0920-5632(01)01765-0.
Texto completo da fonteDrabold, David A., P. A. Fedders, Stefan Klemm e Otto F. Sankey. "Finite-temperature properties of amorphous silicon". Physical Review Letters 67, n.º 16 (14 de outubro de 1991): 2179–82. http://dx.doi.org/10.1103/physrevlett.67.2179.
Texto completo da fonteSeibert, David, e Charles Gale. "Measuring hadron properties at finite temperature". Physical Review C 52, n.º 2 (1 de agosto de 1995): R490—R494. http://dx.doi.org/10.1103/physrevc.52.r490.
Texto completo da fonteJaklič, J., e P. Prelovšek. "Finite-temperature properties of doped antiferromagnets". Advances in Physics 49, n.º 1 (janeiro de 2000): 1–92. http://dx.doi.org/10.1080/000187300243381.
Texto completo da fonteLiu, Hanbin, e Kenneth D. Jordan. "Finite Temperature Properties of (CO2)nClusters". Journal of Physical Chemistry A 107, n.º 30 (julho de 2003): 5703–9. http://dx.doi.org/10.1021/jp0345295.
Texto completo da fonteHAN, FUXIANG, e YONGMEI ZHANG. "FINITE TEMPERATURE PROPERTIES OF OPTICAL LATTICES". International Journal of Modern Physics B 19, n.º 31 (20 de dezembro de 2005): 4567–86. http://dx.doi.org/10.1142/s0217979205032942.
Texto completo da fonteJu, Nengjiu, e Aurel Bulgac. "Finite-temperature properties of sodium clusters". Physical Review B 48, n.º 4 (15 de julho de 1993): 2721–32. http://dx.doi.org/10.1103/physrevb.48.2721.
Texto completo da fonteWu, K. L., S. K. Lai e W. D. Lin. "Finite temperature properties for zinc nanoclusters". Molecular Simulation 31, n.º 6-7 (maio de 2005): 399–403. http://dx.doi.org/10.1080/08927020412331332749.
Texto completo da fontede Oliveira, N. A., e A. A. Gomes. "Laves phase pseudobinaries: finite temperature properties". Journal of Magnetism and Magnetic Materials 117, n.º 1-2 (novembro de 1992): 169–74. http://dx.doi.org/10.1016/0304-8853(92)90307-a.
Texto completo da fonteYang, Jie, Jue-lian Shen e Hai-qing Lin. "Finite Temperature Properties of The FrustratedJ1-J2Model". Journal of the Physical Society of Japan 68, n.º 7 (15 de julho de 1999): 2384–89. http://dx.doi.org/10.1143/jpsj.68.2384.
Texto completo da fonteTeses / dissertações sobre o assunto "Finite-Temperature properties"
Burnett, Mark Michael Stoddard Elizabeth P. "Single-particle properties of nuclear matter at finite temperature". Diss., UMK access, 2007.
Encontre o texto completo da fonte"A thesis in physics." Typescript. Advisor: Elizabeth P. Stoddard. Vita. Title from "catalog record" of the print edition Description based on contents viewed Dec. 18, 2007. Includes bibliographical references (leaf 23). Online version of the print edition.
Moretto, Therese. "Structure and properties of hadrons at zero and finite temperature". Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335764.
Texto completo da fonteRobaina, Fernandez Daniel [Verfasser]. "Static and dynamic properties of QCD at finite temperature / Daniel Robaina Fernandez". Mainz : Universitätsbibliothek Mainz, 2016. http://d-nb.info/1106573382/34.
Texto completo da fonteWilliams, Michael Eric. "Ab-initio elastic and thermodynamic properties of high-temperature cubic intermetallics at finite temperatures". [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2779.
Texto completo da fonteZhong, Anruo. "Machine learning and adaptive sampling to predict finite-temperature properties in metallic materials at the atomic scale". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP107.
Texto completo da fonteThe properties and behaviors of materials under extreme conditions are essential for energy systems such as fission and fusion reactors. However, accurately predicting the properties of materials at high temperatures remains challenging. Direct measurements of these properties are constrained by experimental instrument limitations, and atomic-scale simulations based on empirical force fields are often unreliable due to a lack of accuracy. This problem can be addressed using machine learning techniques, which have recently become widely used in materials research. Machine learning force fields achieve the accuracy of ab initio calculations; however, their implementation in sampling methods is limited by high computational costs, typically several orders of magnitude greater than those of traditional force fields. To overcome this limitation, this thesis has two objectives: (i) developing machine learning force fields with a better accuracy-efficiency trade-off, and (ii) creating accelerated sampling methods to facilitate the use of computationally expensive machine learning force fields and accurately estimate free energy. For the first objective, we enhance the construction of machine learning force fields by focusing on three key factors: the database, the descriptor of local atomic environments, and the regression model. Within the framework of Gaussian process regression, we propose and optimize descriptors based on Fourier-sampled kernels and novel sparse points selection methods for kernel regression. For the second objective, we develop a fast and robust Bayesian sampling scheme for estimating the fully anharmonic free energy, which is crucial for understanding temperature effects in crystalline solids, utilizing an improved adaptive biasing force method. This method performs a thermodynamic integration from a harmonic reference system, where numerical instabilities associated with zero frequencies are screened off. The proposed sampling method significantly improves convergence speed and overall accuracy. We demonstrate the efficiency of the improved method by calculating the second-order derivatives of the free energy, such as the elastic constants, which are computed several hundred times faster than with standard methods. This approach enables the prediction of the thermodynamic properties of tungsten and Ta-Ti-V-W high-entropy alloys at temperatures that cannot be investigated experimentally, up to their melting point, with ab initio accuracy by employing accurate machine learning force fields. An extension of this method allows for the sampling of a specified metastable state without transitions between different energy basins, thereby providing the formation and binding free energies of defective configurations. This development helps to explain the mechanism behind the observation of voids in tungsten, which cannot be explained by existing ab initio calculations. The free energy profile of vacancies in the Ta-Ti-V-W system is also computed for the first time. Finally, we validate the application of this free energy sampling method to liquids. The accuracy and numerical efficiency of the proposed computational framework, which combines machine learning force fields and enhanced sampling methods, opens up numerous possibilities for the reliable prediction of finite-temperature material properties
Moomaw, Peter. "Drooped Strings and Dressed Mesons: Implications of Gauge-Gravity Duality for the Properties of Heavy-Light Mesons at Finite Temperature". University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1250538856.
Texto completo da fonteWalander, Tomas. "Influences of temperature, fatigue and mixed mode loading on the cohesive properties of adhesive layers". Doctoral thesis, Högskolan i Skövde, Institutionen för ingenjörsvetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-10972.
Texto completo da fonteSeru, Vikas Vineeth, e Venkata Ramana Murthy Polinati. "Modelling and Simulation of Hydrogen Diffusion in High Strength Steel". Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-21128.
Texto completo da fonteCaraballo, Simon. "Thermo-Mechanical Beam Element for Analyzing Stresses in Functionally Graded Materials". Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3024.
Texto completo da fonteRahmanian, Ima. "Thermal and mechanical properties of gypsum boards and their influences on fire resistance of gypsum board based systems". Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/thermal-and-mechanical-properties-of-gypsum-boards-and-their-influences-on-fire-resistance-of-gypsum-board-based-systems(d8eb4bf5-706a-4264-911f-9584ebfbbc83).html.
Texto completo da fonteLivros sobre o assunto "Finite-Temperature properties"
C, Robinson James, e Langley Research Center, eds. Procedure for imolementation of temperature-dependent mechanical property capability in the Engineering Analysis Language (EAL) system. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Encontre o texto completo da fonteCenter, Langley Research, ed. Micromechanics analysis of space simulated thermal deformations and stresses in continuous fiber reinforced composites. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Encontre o texto completo da fonteA, Miller Robert, e Lewis Research Center, eds. Determination of creep behavior of thermal barrier coatings under laser imposed temperature and stress gradients. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1997.
Encontre o texto completo da fonteEckle, Hans-Peter. Models of Quantum Matter. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199678839.001.0001.
Texto completo da fonteEriksson, Olle, Anders Bergman, Lars Bergqvist e Johan Hellsvik. Atomistic Spin Dynamics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788669.001.0001.
Texto completo da fonteCapítulos de livros sobre o assunto "Finite-Temperature properties"
Calles, A., e A. Cabrera. "Finite Temperature Properties for the Electron Gas with Localization up to 3 Dimensions". In Condensed Matter Theories, 37–46. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0605-4_5.
Texto completo da fonteFang, Miaomiao, Yuqi Wang, Jiaxin Liu e Fan Sun. "Research on Support Damage of Highway Bridge Based on Midas". In Lecture Notes in Civil Engineering, 330–37. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1260-3_30.
Texto completo da fonteRabhi, F., G. Cheng e T. Barriere. "Modeling of Viscoelasticity of Thermoplastic Polymers Employed in the Hot Embossing Process". In Lecture Notes in Mechanical Engineering, 251–60. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-58006-2_19.
Texto completo da fonteLi, Xu, Weiqin Liu, Jinxi Qin, Xiuxing Zhao e Jie Chen. "Study on Strain Characteristics of Long Longitudinal Slope Asphalt Pavement Surface". In Lecture Notes in Civil Engineering, 421–30. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-4355-1_39.
Texto completo da fonteNayak, Soumyaranjan, Abhishek Kumar Singh, Hina Gokhale, M. J. N. V. Prasad e K. Narasimhan. "A Numerical Study to Analyze the Effect of Process Parameters on Ring Rolling of Ti-6Al-4V Alloy by Response Surface Methodology". In Lecture Notes in Mechanical Engineering, 315–35. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-58006-2_25.
Texto completo da fonteYang, Zhaochun. "Influence of Temperature on Material Properties". In Material Modeling in Finite Element Analysis, 35–42. 2a ed. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003436317-6.
Texto completo da fonteXu, Yangjian, Daihui Tu e Chunping Xiao. "Nonlinear Finite Element Analysis of Convective Heat Transfer Steady Thermal Stresses in a ZrO2 /FGM/Ti-6Al-4V Composite EFBF Plate with Temperature-Dependent Material Properties". In Ceramic Transactions Series, 265–71. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470640845.ch37.
Texto completo da fonteBetts, D. D., S. Masui e N. Vats. "Enhancement of the Finite Lattice Method for Estimating the Zero Temperature Properties of Quantum Spin Systems in Two Dimensions with Application to the S = 1/2 XY Ferromagnet on the Square Lattice". In Recent Progress in Many-Body Theories, 255–61. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1937-9_23.
Texto completo da fonteWerzner, Eric, Miguel A. A. Mendes, Cornelius Demuth, Dimosthenis Trimis e Subhashis Ray. "Simulation of Fluid Flow, Heat Transfer and Particle Transport Inside Open-Cell Foam Filters for Metal Melt Filtration". In Multifunctional Ceramic Filter Systems for Metal Melt Filtration, 301–33. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-40930-1_13.
Texto completo da fonteZinn-Justin, Jean. "Quantum field theory (QFT) at finite temperature: Equilibrium properties". In Quantum Field Theory and Critical Phenomena, 786–830. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198834625.003.0033.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Finite-Temperature properties"
Ryan, Thomas P., Robert C. Platt, Jeffery S. Dadd e Stanley Humphries. "Tissue Electrical Properties As a Function of Thermal Dose for Use in a Finite Element Model". In ASME 1997 International Mechanical Engineering Congress and Exposition, 167–71. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-1330.
Texto completo da fonteHumphries, Stanley, Robert C. Platt e Thomas P. Ryan. "Finite-Element Codes to Model Electrical Heating and Non-Linear Thermal Transport in Biological Media". In ASME 1997 International Mechanical Engineering Congress and Exposition, 131–34. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-1324.
Texto completo da fonteTorres-Rincon, Juan, Glòria Montaña, Angels Ramos e Laura Tolos. "Finite-temperature effects on D-meson properties". In 10th International Workshop on Charm Physics. Trieste, Italy: Sissa Medialab, 2021. http://dx.doi.org/10.22323/1.385.0040.
Texto completo da fonteAprilia, A., e A. Sulaksono. "Properties of fermionic dark stars at finite temperature". In PROCEEDINGS OF THE 5TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES (ISCPMS2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0007856.
Texto completo da fonteColò, Gianluca, Pier Francesco Bortignon, Nguyen Van Giai, Angela Bracco e Ricardo A. Broglia. "Properties of giant resonances at zero and finite temperature". In Future Directions in Nuclear Physics with 4π Gamma Detection Systems of the New Generation. AIP, 1992. http://dx.doi.org/10.1063/1.42584.
Texto completo da fonteOhno, Hiroshi, Heng-Tong Ding e Olaf Kaczmarek. "Quark mass dependence of quarkonium properties at finite temperature". In The 32nd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2015. http://dx.doi.org/10.22323/1.214.0219.
Texto completo da fonteSator, Ladislav, e Miroslav Repka. "Analysis of Temperature Fields in FGM Micro/Nano Solids by Moving Finite Element Method". In 2023 IEEE 13th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2023. http://dx.doi.org/10.1109/nap59739.2023.10310824.
Texto completo da fonteLee, Geoff M., Ashton S. Bradley e Matthew J. Davis. "Coherence Properties of a Continuously Pumped Atom Laser at Finite Temperature". In Quantum-Atom Optics Downunder. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/qao.2007.qwe26.
Texto completo da fontePapa, Alessandro, Oleg Borisenko, Vladimir Chelnokov, Gennaro Cortese, Mario Gravina e Ivan Surzhikov. "Critical properties of 3D Z(N) lattice gauge theories at finite temperature". In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0463.
Texto completo da fonteManjang, Salama, e Bidayatul Armynah. "The Radial Distribution of Temperature in XLPE Cable an Analysis The Finite Element Numerical Method". In 2006 IEEE 8th International Conference on Properties and applications of Dielectric Materials. IEEE, 2006. http://dx.doi.org/10.1109/icpadm.2006.284209.
Texto completo da fonteRelatórios de organizações sobre o assunto "Finite-Temperature properties"
Lui, Rui, Cheng Zhu, John Schmalzel, Daniel Offenbacker, Yusuf Mehta, Benjamin Barrowes, Danney Glaser e Wade Lein. Experimental and numerical analyses of soil electrical resistivity under subfreezing conditions. Engineer Research and Development Center (U.S.), abril de 2024. http://dx.doi.org/10.21079/11681/48430.
Texto completo da fonteJung. L52232 Weld Metal Cooling Rate Prediction of Narrow Groove Pipeline Girth Welds FEA Modeling. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), janeiro de 2008. http://dx.doi.org/10.55274/r0011321.
Texto completo da fonteKamai, Tamir, Gerard Kluitenberg e Alon Ben-Gal. Development of heat-pulse sensors for measuring fluxes of water and solutes under the root zone. United States Department of Agriculture, janeiro de 2016. http://dx.doi.org/10.32747/2016.7604288.bard.
Texto completo da fonteLOW-TEMPERATURE COMPRESSION BEHAVIOUR OF CIRCULAR STUB STAINLESS-STEEL TUBULAR COLUMNS. The Hong Kong Institute of Steel Construction, setembro de 2022. http://dx.doi.org/10.18057/ijasc.2022.18.3.4.
Texto completo da fonte