Teses / dissertações sobre o tema "Finite semigroups"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 32 melhores trabalhos (teses / dissertações) para estudos sobre o assunto "Finite semigroups".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja as teses / dissertações das mais diversas áreas científicas e compile uma bibliografia correta.
Wilson, Wilf A. "Computational techniques in finite semigroup theory". Thesis, University of St Andrews, 2019. http://hdl.handle.net/10023/16521.
Texto completo da fonteDistler, Andreas. "Classification and enumeration of finite semigroups". Thesis, St Andrews, 2010. http://hdl.handle.net/10023/945.
Texto completo da fonteHum, Marcus. "The representation theory of finite semigroups /". Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33409.
Texto completo da fonteRodgers, James David, e jdr@cgs vic edu au. "On E-Pseudovarieties of Finite Regular Semigroups". RMIT University. Mathematical and Geospatial Sciences, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080808.155720.
Texto completo da fonteDistler, Andreas [Verfasser]. "Classification and Enumeration of Finite Semigroups / Andreas Distler". Aachen : Shaker, 2010. http://d-nb.info/1081886196/34.
Texto completo da fonteTesson, Pascal. "Computational complexity questions related to finite monoids and semigroups". Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=84441.
Texto completo da fonteWe first consider the "program over monoid" model of D. Barrington and D. Therien [BT88] and set out to answer two fundamental questions: which monoids are rich enough to recognize arbitrary languages via programs of arbitrary length, and which monoids are so weak that any program over them has an equivalent of polynomial length? We find evidence that the two notions are dual and in particular prove that every monoid in DS has exactly one of these two properties. We also prove that for certain "weak" varieties of monoids, programs can only recognize those languages with a "neutral letter" that can be recognized via morphisms over that variety.
We then build an algebraic approach to communication complexity, a field which has been of great importance in the study of small complexity classes. We prove that every monoid has communication complexity O(1), &THgr;(log n) or &THgr;(n) in this model. We obtain similar classifications for the communication complexity of finite monoids in the probabilistic, simultaneous, probabilistic simultaneous and MOD p-counting variants of this two-party model and thus characterize the communication complexity (in a worst-case partition sense) of every regular language in these five models. Furthermore, we study the same questions in the Chandra-Furst-Lipton multiparty extension of the classical communication model and describe the variety of monoids which have bounded 3-party communication complexity and bounded k-party communication complexity for some k. We also show how these bounds can be used to establish computational limitations of programs over certain classes of monoids.
Finally, we consider the computational complexity of testing if an equation or a system of equations over some fixed finite monoid (or semigroup) has a solution.
Garba, Goje Uba. "Idempotents, nilpotents, rank and order in finite transformation semigroups". Thesis, University of St Andrews, 1992. http://hdl.handle.net/10023/13703.
Texto completo da fonteAlAli, Amal. "Cosets in inverse semigroups and inverse subsemigroups of finite index". Thesis, Heriot-Watt University, 2016. http://hdl.handle.net/10399/3185.
Texto completo da fonteAbu-Ghazalh, Nabilah Hani. "Finiteness conditions for unions of semigroups". Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3687.
Texto completo da fonteAwang, Jennifer S. "Dots and lines : geometric semigroup theory and finite presentability". Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/6923.
Texto completo da fonteFleischer, Lukas [Verfasser], e Volker [Akademischer Betreuer] Diekert. "Algorithms and complexity results for finite semigroups / Lukas Fleischer ; Betreuer: Volker Diekert". Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2019. http://d-nb.info/1184277532/34.
Texto completo da fonteNyagahakwa, Venuste. "Semigroups of Sets Without the Baire Property In Finite Dimensional Euclidean Spaces". Licentiate thesis, Linköpings universitet, Matematik och tillämpad matematik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-116679.
Texto completo da fonteViehweg, Jarom. "Ore's theorem". CSUSB ScholarWorks, 2011. https://scholarworks.lib.csusb.edu/etd-project/145.
Texto completo da fonteBarloy, Corentin. "On the complexity of regular languages". Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILB012.
Texto completo da fonteRegular languages, languages computed by finite automata, are among the simplest objects in theoretical computer science. This thesis explores several computation models: parallel computing with Boolean circuits, structured document streaming processing, and information maintenance on a structure subject to incremental updates. For the latter, auxiliary structures are either stored in RAM or represented by databases updated by logical formulae.This thesis investigates the resources required to compute classes of regular languages in each of these models. The methods employed rely on the interaction between algebra, logic, and combinatorics, notably exploiting the theory of finite semigroups. This approach of complexity has proven extremely fruitful, particularly in the context of Boolean circuits, where regular languages play a central role. This research angle was crystallised by Howard Straubing in his book "Finite Automata, Formal Logic, and Circuit Complexity", where he conjectured that any regular language definable by an arbitrary formula from a logic fragment can be rewritten to use only simple, regular predicates.The first objective of this manuscript is to prove this conjecture in the case of the Sigma2 fragment of first-order logic with a single alternation of quantification. A second result provides a description of space complexity, in the streaming model, for verifying regular properties on trees. Special attention is given to properties verifiable in constant and logarithmic space. A third objective is to describe all regular tree languages that can be incrementally maintained in constant time in RAM. Finally, a last part focuses on the development of efficient logical formulae for maintaining all regular languages in the relational model
Cunha, Grégory Duran. "On Weierstrass points and some properties of curves of Hurwitz type". Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-18102018-084025/.
Texto completo da fonteEste trabalho apresenta vários resultados em curvas do tipo Hurwitz, definidas sobre um corpo finito. Em 1961, Tallini investigou curvas planas irredutíveis de grau mínimo contendo todos os pontos do plano projetivo PG(2,q) sobre um corpo finito de ordem q. Provamos que tais curvas são Fq3(q2+q+1)-projetivamente equivalentes à curva de Hurwitz de grau q+2, e calculamos alguns de seus pontos de Weierstrass. Em adição, provamos que, quando q é primo, a curva é ordinária, isto é, o p-rank é igual ao gênero da curva. Também calculamos o grupo de automorfismos desta curva e mostramos que algumas das curvas quocientes, construídas a partir de certos grupos cíclicos de automorfismos, são ainda curvas do tipo Hurwitz. Além disso, solucionamos o problema de descrever explicitamente o conjunto de todos os gaps puros de Weierstrass suportados por dois ou três pontos especiais em curvas de Hurwitz. Finalmente, usamos tal caracterização para construir códigos de Goppa com bons parâmetros, sendo alguns deles recordes na tabela Mint.
McDermott, Matthew. "Fast Algorithms for Analyzing Partially Ranked Data". Scholarship @ Claremont, 2014. http://scholarship.claremont.edu/hmc_theses/58.
Texto completo da fonteLi, Xiaodong. "Observation et commande de quelques systèmes à paramètres distribués". Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00456850.
Texto completo da fonteFilho, Antonio Calixto de Souza. "Sobre uma classificação dos anéis de inteiros, dos semigrupos finitos e dos RA-loops com a propriedade hiperbólica". Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-30012009-163028/.
Texto completo da fonteFor a given division algebra of a quaternion algebra, we construct and define two types of units of its $\\Z$-orders: Pell units and Gauss units. Also, for the quadratic imaginary extensions over the racionals and some fixed group $G$, we classify the algebraic integral rings for which the unit group ring is a hyperbolic group. We also classify the finite semigroups $S$, for which all integral orders $\\Gamma$ of $\\Q S$ have hyperbolic unit group $\\U(\\Gamma)$. We conclude with the classification of the $RA$-loops $L$ for which the unit loop of its integral loop ring does not contain a free abelian subgroup of rank two.
Karimou, Gazibo Mohamed. "Etudes mathématiques et numériques des problèmes paraboliques avec des conditions aux limites". Phd thesis, Université de Franche-Comté, 2013. http://tel.archives-ouvertes.fr/tel-00950759.
Texto completo da fonteKarami, Fahd. "Limite singulière de quelques problèmes de Réaction Diffusion: Analyse mathématique et numérique". Phd thesis, Université de Picardie Jules Verne, 2007. http://tel.archives-ouvertes.fr/tel-00180724.
Texto completo da fonteGodin, Thibault. "Machines de Mealy, (semi-)groupes d'automate, problèmes de décision et génération aléatoire". Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC172/document.
Texto completo da fonteIn this thesis, we study Mealy automata, i.e. complete, deterministic, letter-to-letter transducers which have same input and output alphabet. These automata have been used since the 60s to generate (semi)groups that sometimes have remarkable properties, that were used to solve several open problems in (semi)group theory. In this work, we focus more specifically on the possible contributions that theoretical computer science can bring to the study of these automaton (semi)groups.The thesis consists of two main axis. The first one, which corresponds to the Chapters II and III, deals with decision problems and more precisely with the Burnside problem in Chapter II and with singular points in Chapter III. In these two chapters, we link structural properties of the automaton with properties of the generated group or of its action. The second axis, which comprises the Chapter IV, is related with random generation of finite groups. We seek, by drawing random Mealy automata in specific classes, to generate finite groups, and obtain a convergence result for the obtained distribution. This result echoes Dixon's theorem on random permutation groups
"Pseudovarieties of finite semigroups and applications". Chinese University of Hong Kong, 1996. http://library.cuhk.edu.hk/record=b5888910.
Texto completo da fonteThesis (M.Phil.)--Chinese University of Hong Kong, 1996.
Includes bibliographical references (leaves 74-79).
Acknowledgement --- p.i
Abstract --- p.ii
Chapter 1. --- Pseudovarieties of finite algebras --- p.1
Chapter 2. --- Algebraic automata and formal languages theory --- p.19
Chapter 3. --- M-varieties and S-varieties --- p.36
Chapter 4. --- The dot-depth hierarchy --- p.48
Chapter 5. --- Operators P and P' --- p.62
References --- p.74
Jackson, MG. "Small semigroup related structures with infinite properties". Thesis, 1999. https://eprints.utas.edu.au/20445/7/whole_JacksonMarcelGerard1999.pdf.
Texto completo da fontePereira, Manuel Jorge Raminhos. "Finite bases for semigroup varieties". Doctoral thesis, 2020. http://hdl.handle.net/10400.2/10426.
Texto completo da fonteThe aim of this work was to provide an atlas of identity bases for varieties generated by small semigroups and groups. To help the working mathematician easily find information, a website was implemented, running in the background automated reasoning tools and finite model builders, so that the user has an automatic intelligent guide on the literature. For instance, the site provide the first complete the list of varieties generated by a semigroup of order up to 5. The website also provides identity bases for several types of semigroups or groups, such as bands, commutative groups, and metabelian groups. Regarding the inherent non-finite basis property, the website can decide whether or not a given finite semigroup possesses this property. The site provides some other functionalities such as a tool that outputs the multiplication table of a semigroup given by a C-presentation, where C is any class of algebras defined by a set of first order formulas. The inverse conversion is also available. This work also gives a contribution to the extension of the database of known varieties: there are 28634 nonisomorphic semigroups of order 6. The varieties of 2035 of these semigroups do not coincide to any known variety generated by semigroups of order up to 5. In this project, building on the Birkhoff theorem and applying new computer algorithms and automatic theorem proving, it was possible to divide these 2035 semigroups into 463 sets of semigroups that satisfy the same identities, corresponding to 414 new proposed varieties (since there are 45 known finitely-based and 4 known non-finitely based varieties generated by semigroups of order 6). Additionally, candidate identities for the identity basis for all these new varieties are also proposed and presented in this thesis, accompanied by all Cayley tables and the corresponding GAP smallsemi package IDs in each set of semigroups found. The proofs of these new varieties represent open problems and a challenge to all mathematicians in this field. The same methodology can be extended to find new candidate varieties generated by semigroups of order 7 or larger (within this work were found 73807 nonisomorphic semigroups of order 7 whose varieties do not coincide with known varieties registered in the site database).
Karimi, Nasim. "Reaching the minimum ideal in a finite semigroup". Doctoral thesis, 2015. https://repositorio-aberto.up.pt/handle/10216/78141.
Texto completo da fonteKarimi, Nasim. "Reaching the minimum ideal in a finite semigroup". Tese, 2015. https://repositorio-aberto.up.pt/handle/10216/78141.
Texto completo da fonte"C*-semigroup bundles and c*-algebras whose irreducible representations are all finite-dimensional". Tulane University, 1987.
Encontre o texto completo da fonteacase@tulane.edu
Li, Baiyu. "Syntactic Complexities of Nine Subclasses of Regular Languages". Thesis, 2012. http://hdl.handle.net/10012/6838.
Texto completo da fonteŚpiewak, Adam. "Geometric properties of measures in finite-dimensional dynamical systems". Doctoral thesis, 2020. https://depotuw.ceon.pl/handle/item/3779.
Texto completo da fonteThis dissertation consists of two parts, both studying geometric properties of measures occuring in finite-dimensional dynamical systems, mainly from the point of view of the dimension theory. The first part concerns probabilistic aspects of the Takens embedding theorem, dealing with the problem of reconstructing a dynamical system from a sequence of measurements performed via a one-dimensional observable. Classical results of that type state that for a typical observable, every initial state of the system is uniquely determined by a sequence of measurements as long as the number of measurements is greater than twice the dimension of the phase space. The main result of this part of the dissertation states that in the probabilistic setting the number of measurements can be reduced by half, i.e. almost every initial state of the system can be uniquely determined provided that the number of measurements is greater than the Hausdorff dimension of the phase space. This result partially proves a conjecture of Shroer, Sauer, Ott and Yorke from 1998. We provide also a non-dynamical probabilistic embedding theorem and several examples. In the second part of the dissertation we consider a family of stationary probability measures for certain random dynamical systems on the unit interval and study their geometric properties. The measures we are interested in can be seen as stationary measures for Markov processes on the unit interval, which arise from random iterations of two piecewise-affine homeomorphisms of the interval. We call such random systems Alseda-Misiurewicz systems (or AM-systems), as they were introduced and studied by Alseda and Misiurewicz, who conjectured in 2014 that typically measures of that type should be singular with respect to the Lebesgue measure. We work towards characterization of parameters exhibiting this property. Our main result is establishing singularity of the corresponding stationary measures for certain sets of parameters, hence confirming the conjecture on these sets. We present two different approaches to proving singularity - one based on constructing invariant minimal Cantor sets and one based on estimating the expected return time to a suitably chosen interval. In the first case we calculate the Hausdorff dimension of the measure for certain parameters. We present also several auxiliary results concerning AM-systems.
Jastrzębska, Małgorzata. "Kraty anihilatorów w pewnych klasach algebr". Doctoral thesis, 2015. https://depotuw.ceon.pl/handle/item/1474.
Texto completo da fonteIn several papers connections of properties of lattices of annihilators with properties of lattices of one-sided ideals and with other important properties of associative algebras are considered. The aim of this dissertation is to continue these considerations. Special attention will be paid to reduced algebras and semiprimary algebras, in particular to finite dimensional algebras. We provide now some of obtained results. In chapter two we show that for every reduced algebra the lattices of its left annihilators and right annihilators are equal and this lattice is a Boolean algebra. If A is a semiprimary algebra, then the lattices of annihilators of A are Boolean algebras if and only if A is a finite direct sum of division algebras. In the third chapter, for any field K and for arbitrary lattice L we construct a local algebra K[L] and a lattice embedding of L into the lattice of left annihilators of K[L]. In addition we can assume, that K[L] is a commutative algebra. As a consequence, we are able to prove that there is no nontrivial identity satisfied in all lattices of annihilators in local algebras. Let us remind, that lattices of one-sided ideals in all algebras are modular. Thus they satisfy many nontrivial identities. If L is a finite lattice, then our algebra K[L] is finite dimensional. Hence we obtain an embedding of any finite lattice into a lattice of annihilators in a finite dimensional algebra. Earlier examples from the literature showed mainly embeddings into lattices of annihilators of infinite dimensional algebras. Using our construction we also describe, in chapter four, finite lattices being representable as lattices of all annihilators in finite dimensional algebras over infinite fields.
Scholle, Marek. "Pologrupy mřížových bodů". Master's thesis, 2012. http://www.nusl.cz/ntk/nusl-305082.
Texto completo da fonteMęcel, Arkadiusz. "Półgrupa klas sprzężoności ideałów lewostronnych algebry łącznej". Doctoral thesis, 2014.
Encontre o texto completo da fonteThe aim of this thesis is to investigate the semigroup C(A) of conjugacy classes of left ideals of a finite dimensional algebra A with 1 over a field K. The operation in this semigroup is naturally induced from the multiplicative structure of the algebra itself. We determine certain invariants of an algebra A that can be expressed in terms of the structure of C(A). Assuming that the field K is algebraically closed and that the Jacobson radical of the algebra A is 2-nilpotent, we prove that the structure of the semigroup C(A) completely determines the structure of A, assuming that C(A) is finite. In the context of the class of algebras that are considered for this result, some partial results concerning the classification of algebras for which the semigroups of conjugacy classes are finite are obtained. It is shown, among other results, that if the algebra A has 2-nilpotent Jacobson radical then the finiteness of C(M_6(A)) is equivalent to the fact, that A is of finite representation type.