Siga este link para ver outros tipos de publicações sobre o tema: Finite groups.

Artigos de revistas sobre o tema "Finite groups"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Finite groups".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

A. Jund, Asaad, e Haval M. Mohammed Salih. "Result Involution Graphs of Finite Groups". Journal of Zankoy Sulaimani - Part A 23, n.º 1 (20 de junho de 2021): 113–18. http://dx.doi.org/10.17656/jzs.10846.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Zhang, Jinshan, Zhencai Shen e Jiangtao Shi. "Finite groups with few vanishing elements". Glasnik Matematicki 49, n.º 1 (8 de junho de 2014): 83–103. http://dx.doi.org/10.3336/gm.49.1.07.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Kondrat'ev, A. S., A. A. Makhnev e A. I. Starostin. "Finite groups". Journal of Soviet Mathematics 44, n.º 3 (fevereiro de 1989): 237–318. http://dx.doi.org/10.1007/bf01676868.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Andruskiewitsch, N., e G. A. García. "Extensions of Finite Quantum Groups by Finite Groups". Transformation Groups 14, n.º 1 (18 de novembro de 2008): 1–27. http://dx.doi.org/10.1007/s00031-008-9039-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Conrad, Paul F., e Jorge Martinez. "Locally finite conditions on lattice-ordered groups". Czechoslovak Mathematical Journal 39, n.º 3 (1989): 432–44. http://dx.doi.org/10.21136/cmj.1989.102314.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Chen, Yuanqian, Paul Conrad e Michael Darnel. "Finite-valued subgroups of lattice-ordered groups". Czechoslovak Mathematical Journal 46, n.º 3 (1996): 501–12. http://dx.doi.org/10.21136/cmj.1996.127311.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Kniahina, V. N., e V. S. Monakhov. "Finite groups with semi-subnormal Schmidt subgroups". Algebra and Discrete Mathematics 29, n.º 1 (2020): 66–73. http://dx.doi.org/10.12958/adm1376.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Cao, Jian Ji, e Xiu Yun Guo. "Finite NPDM-groups". Acta Mathematica Sinica, English Series 37, n.º 2 (fevereiro de 2021): 306–14. http://dx.doi.org/10.1007/s10114-021-8047-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Burn, R. P., L. C. Grove e C. T. Benson. "Finite Reflection Groups". Mathematical Gazette 70, n.º 451 (março de 1986): 77. http://dx.doi.org/10.2307/3615867.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Stonehewer, S. E. "FINITE SOLUBLE GROUPS". Bulletin of the London Mathematical Society 25, n.º 5 (setembro de 1993): 505–6. http://dx.doi.org/10.1112/blms/25.5.505.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

MCIVER, ANNABELLE, e PETER M. NEUMANN. "ENUMERATING FINITE GROUPS". Quarterly Journal of Mathematics 38, n.º 4 (1987): 473–88. http://dx.doi.org/10.1093/qmath/38.4.473.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Cherlin, Gregory, e Ulrich Felgner. "Homogeneous Finite Groups". Journal of the London Mathematical Society 62, n.º 3 (dezembro de 2000): 784–94. http://dx.doi.org/10.1112/s0024610700001484.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Blackburn, Norman, Marian Deaconescu e Avinoam Mann. "Finite equilibrated groups". Mathematical Proceedings of the Cambridge Philosophical Society 120, n.º 4 (novembro de 1996): 579–88. http://dx.doi.org/10.1017/s0305004100001560.

Texto completo da fonte
Resumo:
If H, K are subgroups of a group G, then HK is a subgroup of G if and only if HK = KH. This condition certainly holds if H ≤ NG(K) or K ≤ NG(H). But the majority of groups can also be expressed as HK, where neither H nor K is normal. In this paper we consider groups G for which no subgroup G1 can be expressed as the product of non-normal subgroups of G1. Such a group is said to be equilibrated. Thus G is equilibrated if and only if either H ≤ NG(K) or K ≤ NG(H) whenever H, K and HK are subgroups of G.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Heineken, Hermann. "Finite complete groups". Rendiconti del Seminario Matematico e Fisico di Milano 54, n.º 1 (dezembro de 1985): 29–34. http://dx.doi.org/10.1007/bf02924848.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Starostin, A. I. "Finite p-groups". Journal of Mathematical Sciences 88, n.º 4 (fevereiro de 1998): 559–85. http://dx.doi.org/10.1007/bf02365317.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Myl’nikov, A. L. "Finite tangled groups". Siberian Mathematical Journal 48, n.º 2 (março de 2007): 295–99. http://dx.doi.org/10.1007/s11202-007-0030-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Myasnikov, Alexei, e Denis Osin. "Algorithmically finite groups". Journal of Pure and Applied Algebra 215, n.º 11 (novembro de 2011): 2789–96. http://dx.doi.org/10.1016/j.jpaa.2011.03.019.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Huang, Hua-Lin, Yuping Yang e Yinhuo Zhang. "On nondiagonal finite quasi-quantum groups over finite abelian groups". Selecta Mathematica 24, n.º 5 (7 de junho de 2018): 4197–221. http://dx.doi.org/10.1007/s00029-018-0420-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Reid, J. D. "On Finite Groups and Finite Fields". American Mathematical Monthly 98, n.º 6 (junho de 1991): 549. http://dx.doi.org/10.2307/2324878.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

WILSON, JOHN S. "FINITE AXIOMATIZATION OF FINITE SOLUBLE GROUPS". Journal of the London Mathematical Society 74, n.º 03 (dezembro de 2006): 566–82. http://dx.doi.org/10.1112/s0024610706023106.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Lubotzky, Alexander, e Avinoam Mann. "Residually finite groups of finite rank". Mathematical Proceedings of the Cambridge Philosophical Society 106, n.º 3 (novembro de 1989): 385–88. http://dx.doi.org/10.1017/s0305004100068110.

Texto completo da fonte
Resumo:
The recent constructions, by Rips and Olshanskii, of infinite groups with all proper subgroups of prime order, and similar ‘monsters’, show that even under the imposition of apparently very strong finiteness conditions, the structure of infinite groups can be rather weird. Thus it seems reasonable to impose the type of condition that enables us to apply the theory of finite groups. Two such conditions are local finiteness and residual finiteness, and here we are interested in the latter. Specifically, we consider residually finite groups of finite rank, where a group is said to have rank r, if all finitely generated subgroups of it can be generated by r elements. Recall that a group is said to be virtually of some property, if it has a subgroup of finite index with this property. We prove the following result:Theorem 1. A residually finite group of finite rank is virtually locally soluble.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Reid, J. D. "On Finite Groups and Finite Fields". American Mathematical Monthly 98, n.º 6 (junho de 1991): 549–51. http://dx.doi.org/10.1080/00029890.1991.11995756.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Wei, X., A. Kh Zhurtov, D. V. Lytkina e V. D. Mazurov. "Finite groups close to Frobenius groups". Sibirskii matematicheskii zhurnal 60, n.º 5 (30 de agosto de 2019): 1035–40. http://dx.doi.org/10.33048/smzh.2019.60.504.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Sozutov, A. I. "Groups Saturated with Finite Frobenius Groups". Mathematical Notes 109, n.º 1-2 (janeiro de 2021): 270–79. http://dx.doi.org/10.1134/s0001434621010314.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Wei, X., A. Kh Zhurtov, D. V. Lytkina e V. D. Mazurov. "Finite Groups Close to Frobenius Groups". Siberian Mathematical Journal 60, n.º 5 (setembro de 2019): 805–9. http://dx.doi.org/10.1134/s0037446619050045.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Lubotzky, Alexander, e Avinoam Mann. "Powerful p-groups. I. Finite groups". Journal of Algebra 105, n.º 2 (fevereiro de 1987): 484–505. http://dx.doi.org/10.1016/0021-8693(87)90211-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Lytkina, D. V. "Groups saturated by finite simple groups". Algebra and Logic 48, n.º 5 (setembro de 2009): 357–70. http://dx.doi.org/10.1007/s10469-009-9063-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Pettet, Martin R. "Locally finite groups as automorphism groups". Archiv der Mathematik 48, n.º 1 (janeiro de 1987): 1–9. http://dx.doi.org/10.1007/bf01196346.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Hussain, Muhammad Tanveer, e Shamsher Ullah. "On nearly SΦ-normal subgroups of finite groups". Algebra and Discrete Mathematics 36, n.º 2 (2023): 151–65. http://dx.doi.org/10.12958/adm2007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Li, Changwen. "On weakly s-normal subgroups of finite groups". Algebra and Discrete Mathematics 36, n.º 2 (2023): 179–87. http://dx.doi.org/10.12958/adm1673.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Trofimuk, Alexander. "FINITE GROUPS WITH GIVEN SYSTEMS OF PROPERMUTABLE SUBGROUPS". Eurasian Mathematical Journal 15, n.º 1 (2024): 91–97. http://dx.doi.org/10.32523/2077-9879-2024-15-1-91-97.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Zimmerman, Jay. "Finite Groups Which are Automorphism Groups of Infinite Groups Only". Canadian Mathematical Bulletin 28, n.º 1 (1 de março de 1985): 84–90. http://dx.doi.org/10.4153/cmb-1985-008-4.

Texto completo da fonte
Resumo:
AbstractThe object of this paper is to exhibit an infinite set of finite semisimple groups H, each of which is the automorphism group of some infinite group, but of no finite group. We begin the construction by choosing a finite simple group S whose outer automorphism group and Schur multiplier possess certain specified properties. The group H is a certain subgroup of Aut S which contains S. For example, most of the PSL's over a non-prime finite field are candidates for S, and in this case, H is generated by all of the inner, diagonal and graph automorphisms of S.
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Bandman, Tatiana, Gert-Martin Greuel, Fritz Grunewald, Boris Kunyavskii, Gerhard Pfister e Eugene Plotkin. "Identities for finite solvable groups and equations in finite simple groups". Compositio Mathematica 142, n.º 03 (maio de 2006): 734–64. http://dx.doi.org/10.1112/s0010437x0500179x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Kozhukhov, S. F. "FINITE AUTOMORPHISM GROUPS OF TORSION-FREE ABELIAN GROUPS OF FINITE RANK". Mathematics of the USSR-Izvestiya 32, n.º 3 (30 de junho de 1989): 501–21. http://dx.doi.org/10.1070/im1989v032n03abeh000778.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Durakov, B. E., e A. I. Sozutov. "On Periodic Groups Saturated with Finite Frobenius Groups". Bulletin of Irkutsk State University. Series Mathematics 35 (2021): 73–86. http://dx.doi.org/10.26516/1997-7670.2021.35.73.

Texto completo da fonte
Resumo:
A group is called weakly conjugate biprimitively finite if each its element of prime order generates a finite subgroup with any of its conjugate elements. A binary finite group is a periodic group in which any two elements generate a finite subgroup. If $\mathfrak{X}$ is some set of finite groups, then the group $G$ saturated with groups from the set $\mathfrak{X}$ if any finite subgroup of $G$ is contained in a subgroup of $G$, isomorphic to some group from $\mathfrak{X}$. A group $G = F \leftthreetimes H$ is a Frobenius group with kernel $F$ and a complement $H$ if $H \cap H^f = 1$ for all $f \in F^{\#}$ and each element from $G \setminus F$ belongs to a one conjugated to $H$ subgroup of $G$. In the paper we prove that a saturated with finite Frobenius groups periodic weakly conjugate biprimitive finite group with a nontrivial locally finite radical is a Frobenius group. A number of properties of such groups and their quotient groups by a locally finite radical are found. A similar result was obtained for binary finite groups with the indicated conditions. Examples of periodic non locally finite groups with the properties above are given, and a number of questions on combinatorial group theory are raised.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Borovik, Alexandre, e Ulla Karhumäki. "Locally finite groups of finite centralizer dimension". Journal of Group Theory 22, n.º 4 (1 de julho de 2019): 729–40. http://dx.doi.org/10.1515/jgth-2018-0109.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Zimmermann, Bruno. "Finite groups of outer automorphisms of free groups". Glasgow Mathematical Journal 38, n.º 3 (setembro de 1996): 275–82. http://dx.doi.org/10.1017/s0017089500031700.

Texto completo da fonte
Resumo:
Let Fr denote the free group of rank r and Out Fr: = AutFr/Inn Fr the outer automorphism group of Fr (automorphisms modulo inner automorphisms). In [10] we determined the maximal order 2rr! (for r > 2) for finite subgroups of Out Fr as well as the finite subgroup of that order which, for r > 3, is unique up to conjugation. In the present paper we determine all maximal finite subgroups (that is not contained in a larger finite subgroup) of Out F3, up to conjugation (Theorem 2 in Section 3). Here the considered case r = 3 serves as a model case: our method can be applied for other small values of r (in principle for any value of r) but the computations become considerably longer and are more apt for a computer then; the method can also be applied to determine the maximal finite subgroups of the automorphism group Aut Fr of Fr. Note that the canonical projection Aut Fr ⃗ Out Fr is injective on finite subgroups of Aut Fr; however, not all finite subgroups of Out Fr lift to finite subgroups of Aut Fr.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Cheung, K., e M. Mosca. "Decomposing finite Abelian groups". Quantum Information and Computation 1, n.º 3 (outubro de 2001): 26–32. http://dx.doi.org/10.26421/qic1.3-2.

Texto completo da fonte
Resumo:
This paper describes a quantum algorithm for efficiently decomposing finite Abelian groups into a product of cyclic groups. Such a decomposition is needed in order to apply the Abelian hidden subgroup algorithm. Such a decomposition (assuming the Generalized Riemann Hypothesis) also leads to an efficient algorithm for computing class numbers (known to be at least as difficult as factoring).
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Leavitt, J. L., G. J. Sherman e M. E. Walker. "Rewriteability in Finite Groups". American Mathematical Monthly 99, n.º 5 (maio de 1992): 446. http://dx.doi.org/10.2307/2325089.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Witbooi, Peter. "Finite images of groups". Quaestiones Mathematicae 23, n.º 3 (setembro de 2000): 279–85. http://dx.doi.org/10.2989/16073600009485977.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Gil, Antoni, e José R. Martínez. "Mutations in finite groups". Bulletin of the Belgian Mathematical Society - Simon Stevin 1, n.º 4 (1994): 491–506. http://dx.doi.org/10.36045/bbms/1103408606.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Huang, J., B. Hu e A. N. Skiba. "Finite generalized soluble groups". Algebra i logika 58, n.º 2 (9 de julho de 2019): 252–70. http://dx.doi.org/10.33048/alglog.2019.58.207.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Chuang, Joseph, Markus Linckelmann, Gunter Malle e Jeremy Rickard. "Representations of Finite Groups". Oberwolfach Reports 9, n.º 1 (2012): 963–1019. http://dx.doi.org/10.4171/owr/2012/16.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Chuang, Joseph, Meinolf Geck, Markus Linckelmann e Gabriel Navarro. "Representations of Finite Groups". Oberwolfach Reports 12, n.º 2 (2015): 971–1027. http://dx.doi.org/10.4171/owr/2015/18.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Chuang, Joseph, Meinolf Geck, Radha Kessar e Gabriel Navarro. "Representations of Finite Groups". Oberwolfach Reports 16, n.º 1 (26 de fevereiro de 2020): 841–95. http://dx.doi.org/10.4171/owr/2019/14.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Sun, Zhi-Wei. "Finite coverings of groups". Fundamenta Mathematicae 134, n.º 1 (1990): 37–53. http://dx.doi.org/10.4064/fm-134-1-37-53.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Chupordia, V. A. "On finite-finitary groups". Researches in Mathematics 15 (15 de fevereiro de 2021): 154. http://dx.doi.org/10.15421/240723.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Broto, Carles, e Jesper Møller. "Chevalleyp–local finite groups". Algebraic & Geometric Topology 7, n.º 4 (18 de dezembro de 2007): 1809–919. http://dx.doi.org/10.2140/agt.2007.7.1809.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Deaconescu, Marian, e Gary L. Walls. "Finite Groups with Poles". Algebra Colloquium 13, n.º 03 (setembro de 2006): 507–12. http://dx.doi.org/10.1142/s1005386706000459.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Attar, M. Shabani. "Semicomplete Finite p-Groups". Algebra Colloquium 18, spec01 (dezembro de 2011): 937–44. http://dx.doi.org/10.1142/s1005386711000812.

Texto completo da fonte
Resumo:
Let G be a group and G' be its commutator subgroup. An automorphism α of G is called an IA-automorphism if x-1α (x) ∈ G' for each x ∈ G. The set of all IA-automorphisms of G is denoted by IA (G). A group G is called semicomplete if and only if IA (G)= Inn (G), where Inn (G) is the inner automorphism group of G. In this paper we characterize semicomplete finite p-groups of class 2, give some necessary conditions for finite p-groups to be semicomplete, and characterize semicomplete non-abelian groups of orders p4 and p5.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia