Siga este link para ver outros tipos de publicações sobre o tema: Finite element analysis.

Artigos de revistas sobre o tema "Finite element analysis"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Finite element analysis".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Rajput, Sunil G. "Finite Element Analysis of Twin Screw Extruder". Indian Journal of Applied Research 3, n.º 6 (1 de outubro de 2011): 205–8. http://dx.doi.org/10.15373/2249555x/june2013/68.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Mackerle, Jaroslav. "Finite element analysis of machine elements". Engineering Computations 16, n.º 6 (setembro de 1999): 677–748. http://dx.doi.org/10.1108/02644409910286429.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Haukaas, T., e P. Gardoni. "Model Uncertainty in Finite-Element Analysis: Bayesian Finite Elements". Journal of Engineering Mechanics 137, n.º 8 (agosto de 2011): 519–26. http://dx.doi.org/10.1061/(asce)em.1943-7889.0000253.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

S., L. R., Barna Szabo e Ivo Babuska. "Finite Element Analysis." Mathematics of Computation 60, n.º 201 (janeiro de 1993): 432. http://dx.doi.org/10.2307/2153181.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Williamson, M. P. "Finite-element analysis". Computer-Aided Engineering Journal 2, n.º 2 (1985): 66. http://dx.doi.org/10.1049/cae.1985.0013.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

KABE, KAZUYUKI. "Finite element analysis." NIPPON GOMU KYOKAISHI 62, n.º 4 (1989): 204–14. http://dx.doi.org/10.2324/gomu.62.204.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Al Hasan, NuhaHadiJasim. "Simulation of Connecting Rod Using Finite Element Analysis". International Journal of Innovative Research in Computer Science & Technology 6, n.º 5 (setembro de 2018): 113–16. http://dx.doi.org/10.21276/ijircst.2018.6.5.5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Ahmed, Muhammed M., e Sarkawt A. Hasan. "Finite Element Analysis of Reinforced Concrete Deep Beams". Journal of Zankoy Sulaimani - Part A 4, n.º 1 (5 de setembro de 2000): 51–68. http://dx.doi.org/10.17656/jzs.10065.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Gophane, Ishwar, Narayan Dharashivkar, Pramod Mulik e Prashant Patil. "Theoretical and Finite Element Analysis of Pressure Vessel". Indian Journal Of Science And Technology 17, n.º 12 (20 de março de 2024): 1148–58. http://dx.doi.org/10.17485/ijst/v17i12.3272.

Texto completo da fonte
Resumo:
Objectives: This study tests the vessel strength and performance of pressure vessel under Internal pressure, Nozzle loads, and Hydro-test using Ansys APDL, validating design alignment with ASME Section VIII following the Design by rule (Analytical) and Design by Analysis (FEA) accurate elastic analysis approach. Methods: This study employs ASME methods to validate vessel integrity under various loads. Strength is confirmed through analytical formulas and Finite Element Analysis (FEA) using ANSYS APDL, aligned with widely used ASME BPVC codes in the oil and gas industry. The FE model, utilizing hex elements, ensures result accuracy with a minimum of three elements across thickness. Boundary conditions are validated by comparing hoop stress in FEA with analytically calculated values. ASME's computationally efficient elastic analysis, employing a linear approach, includes stress linearization at discontinuity and non-discontinuity locations, verifying vessel design through analysis. Findings: Initial thicknesses for the shell and cone exceeded analytically calculated minimums, affirming vessel structural integrity through ASME's design by rule approach. Finite Element Analysis (FEA) stress analysis at critical points, such as nozzle junctions and other discontinuity areas, validates accuracy through hoop stress checks. Analysis of design and test load cases reveals stress categories well within ASME Sec VIII limits, confirming the vessel's safety and compliance with elastic stress analysis standards. Novelty: This method emerges as a reliable tool for vessel design, ensuring safety and ASME compliance, particularly beneficial for industries like oil and gas. It provides precise guidelines utilizing hex mesh, validates boundary conditions through hoop stress comparison, and comprehensively assesses stress in critical and non-critical zones through elastic stress analysis. Addressing common challenges identified in the literature review, this approach enhances the accuracy and reliability of pressure vessel designs in compliance with ASME standards for design and test loadings. Keywords: Pressure Vessels, Process Industries, Stress, Loads, Pressure, Thermal, Design Validation, ASME, FE analysis
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Hayashi, Masa, Motonao Yamanaka, Hiroshi Kasebe e Toshiaki Satoh. "Efficient Hierarchical Elements in Finite Element Analysis." Doboku Gakkai Ronbunshu, n.º 591 (1998): 71–84. http://dx.doi.org/10.2208/jscej.1998.591_71.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Nadaf, Mahaboobali, e Dr R. J. Fernandes. "Finite Element Analysis of Laminated Composite Plates Using ANSYS". Bonfring International Journal of Man Machine Interface 4, Special Issue (30 de julho de 2016): 141–44. http://dx.doi.org/10.9756/bijmmi.8171.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Nagarajanayaka, S. H., e Dr R. J. Fernandes. "Finite Element Analysis of Composite Laminated Beams using ANSYS". Bonfring International Journal of Man Machine Interface 4, Special Issue (30 de julho de 2016): 173–77. http://dx.doi.org/10.9756/bijmmi.8177.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Kulkarni, Sachin M., e Dr K. G. Vishwananth. "Analysis for FRP Composite Beams Using Finite Element Method". Bonfring International Journal of Man Machine Interface 4, Special Issue (30 de julho de 2016): 192–95. http://dx.doi.org/10.9756/bijmmi.8181.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Warad, Nilesh, Janardhan Rao, Kedar Kulkarni, Avinash Dandekar, Manoj Salgar e Malhar Kulkarni. "Finite Element Analysis Methodology for Additive Manufactured Tooling Components". International Journal of Engineering and Technology 14, n.º 4 (novembro de 2022): 56–61. http://dx.doi.org/10.7763/ijet.2022.v14.1202.

Texto completo da fonte
Resumo:
Fused deposition modeling (FDM) for additive manufacturing is constantly growing as an innovative process across the industry in areas of prototyping, tooling, and production parts across most manufacturing industry verticals such as Aerospace, Automotive, Agricultural, Healthcare, etc. One such application that is widely used is for tooling on the shop floor e.g. for pick-off tools, assembly fixtures etc. For tooling applications printing the solid fill component with +45/- 45 raster is common practice. There is a requirement for finite element analysis to validate the strength of 3D printed components for some specific applications in tooling, but due to the anisotropic behavior of 3D printed parts and the unavailability of all mechanical properties FE analysis of 3D printed parts is sometimes challenging. Advance approaches like multiscale modeling approach requires specialized & costly analytical tools. So, to understand the behavior of additively manufactured parts the team has conducted a few tests and compared the results. In this work, solid-filled dog-bone tensile test and three-point bending test specimens were printed with +45/-45 raster orientation and tested in the lab. Tensile test specimens were built with flat, on-edge, and up-right orientations and tested to determine the directional properties of young’s modulus. Using mechanical properties from the tension test 3 points bending test is simulated in FE software- ANSYS. The FE modeling was done in two ways, in first model orthotropic properties were assigned to the specimen, and for second model isotropic properties were assigned. For isotropic modeling least value of young’s modulus is used. Simulation results of three-point bending test shows that in the linear region of force-deflection curve, deformation values from FE model with both orthotropic and isotropic modeling are in good agreement with the experimental results. Also, the difference in stress results between isotropic and orthotropic FE model is almost negligible. To support this observation, study is performed for various conditions. The specimens were printed with ABS material on Ultimaker® and ASA material on Stratasys® Fortus 360mc™ machine with T12, T16 and T20 nozzle settings. Study shows, for tooling applications if the 3D printed solid-filled components are designed with a certain factor of safety then validating its strength with isotropic material properties will give acceptable results. The advantage of this approach is getting the isotropic mechanical properties is easy and modeling with FE modeling will be simple.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Girault, Vivette, Shuyu Sun, Mary F. Wheeler e Ivan Yotov. "Coupling Discontinuous Galerkin and Mixed Finite Element Discretizations using Mortar Finite Elements". SIAM Journal on Numerical Analysis 46, n.º 2 (janeiro de 2008): 949–79. http://dx.doi.org/10.1137/060671620.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Pidaparti, Ramana M. "Engineering Finite Element Analysis". Synthesis Lectures on Mechanical Engineering 1, n.º 1 (5 de maio de 2017): 1–267. http://dx.doi.org/10.2200/s00761ed1v01y201703mec001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Battocletti, J. H., e T. A. Knox. "Spherical finite element analysis". IEEE Transactions on Magnetics 30, n.º 6 (1994): 5008–14. http://dx.doi.org/10.1109/20.334288.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Attaelmanan, Abusamra, e Abdelhameed Ali. "Finite Element Analysis of Rectangular Beams". FES Journal of Engineering Sciences 8, n.º 1 (6 de março de 2019): 1–7. http://dx.doi.org/10.52981/fjes.v8i1.11.

Texto completo da fonte
Resumo:
This paper is concerned with the analysis of simply supported beam using MATLAB programming language and structural analysis program SAP2000. The beam was discretized into rectangular elements using finite element method. Three patterns of different dimensions and numbers of rectangular elements were used to verify the results of vertical displacements and stresses obtained by MATLAB and SAP 2000.The development of four noded isoparametric quadrilateral membrane elements in MATLAB programming language is presented. The membrane elements developed are plane strain condition. The considered patterns were analyzed as shell elements using SAP2000. A finite element program is also developed using MATLAB to check the accuracy of the developed elements.
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Gondaliya, Vipul, Mehul Pujara e Niraj Mehta. "Transient Heat transfer Analysis of Induction Furnace by Using Finite Element Analysis". Indian Journal of Applied Research 3, n.º 8 (1 de outubro de 2011): 231–34. http://dx.doi.org/10.15373/2249555x/aug2013/75.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

DILIP A.B, DILIP A. B., e SYED ZAMEER. "Structural Integrity Analysis of Gas Turbine Rotor Component using Finite Element Analysis". Indian Journal of Applied Research 4, n.º 7 (1 de outubro de 2011): 177–78. http://dx.doi.org/10.15373/2249555x/july2014/53.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Jafri, Syed Minal Hussian, e Prof Amit Kaimkuriya. "Structural and Vibration Analysis of a Machine Shaft using Finite Element Analysis". International Journal of Trend in Scientific Research and Development Volume-3, Issue-4 (30 de junho de 2019): 627–32. http://dx.doi.org/10.31142/ijtsrd23844.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Shah, Mr Ronak S., e Prof D. A. Warke. "Numerical Analysis of Friction Stir Welding for AA6061 by Finite Element Analysis". International Journal of Trend in Scientific Research and Development Volume-2, Issue-2 (28 de fevereiro de 2018): 408–17. http://dx.doi.org/10.31142/ijtsrd9430.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Berthaume, Michael A., Paul C. Dechow, Jose Iriarte-Diaz, Callum F. Ross, David S. Strait, Qian Wang e Ian R. Grosse. "Probabilistic finite element analysis of a craniofacial finite element model". Journal of Theoretical Biology 300 (maio de 2012): 242–53. http://dx.doi.org/10.1016/j.jtbi.2012.01.031.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Shirazi-Adl, A. "Nonlinear finite element analysis of wrapping uniaxial elements". Computers & Structures 32, n.º 1 (janeiro de 1989): 119–23. http://dx.doi.org/10.1016/0045-7949(89)90076-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

SILVA, R. S., T. D. GOMES, J. I. L. ALMEIDA e P. F. CAVALCANTE. "FINITE ELEMENT ANALYSIS OF KNEE IMPLANTS MANUFACTURED BY FDM TECHNOLOGY". Revista SODEBRAS 15, n.º 176 (agosto de 2020): 44–49. http://dx.doi.org/10.29367/issn.1809-3957.15.2020.176.44.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Kumar M.p, Yashavantha, e Dr MOHAMED HANEEF. "Design Optimization of Impeller Supporting Frames Using Finite Element Analysis". Indian Journal of Applied Research 4, n.º 7 (1 de outubro de 2011): 179–82. http://dx.doi.org/10.15373/2249555x/july2014/54.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Bharadwaj, Madhu, Santiago Claramunt e Sowmianarayanan Srinivasan. "Modeling Creep Relaxation of Polytetrafluorethylene Gaskets for Finite Element Analysis". International Journal of Materials, Mechanics and Manufacturing 5, n.º 2 (maio de 2017): 123–26. http://dx.doi.org/10.18178/ijmmm.2017.5.2.302.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Shi, Miaomiao, Xiujuan Zhang, Dashun Yang e Bo Wang. "Finite Element Analysis of Interference Fit in a Wheelset Assembly". Innotrans, n.º 3 (2016): 25–30. http://dx.doi.org/10.20291/2311-164x-2016-3-25-30.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Bai, Run Bo, Fu Sheng Liu e Zong Mei Xu. "Element Selection and Meshing in Finite Element Contact Analysis". Advanced Materials Research 152-153 (outubro de 2010): 279–83. http://dx.doi.org/10.4028/www.scientific.net/amr.152-153.279.

Texto completo da fonte
Resumo:
Contact problem, which exists widely in mechanical engineering, civil engineering, manufacturing engineering, etc., is an extremely complicated nonlinear problem. It is usually solved by the finite element method. Unlike with the traditional finite element method, it is necessary to set up contact elements for the contact analysis. In the different types of contact elements, the Goodman joint elements, which cover the surface of contacted bodies with zero thickness, are widely used. However, there are some debates on the characteristics of the attached elements of the Goodman joint elements. For that this paper studies the type, matching, and meshing of the attached elements. The results from this paper would be helpful for the finite element contact analysis.
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Narayana, K. S., R. T. Naik, R. C. Mouli, L. V. V. Gopala Rao e R. T. Babu Naik. "Finite Element Analysis of Elliptical Chord". International Journal of Manufacturing, Materials, and Mechanical Engineering 3, n.º 4 (outubro de 2013): 44–61. http://dx.doi.org/10.4018/ijmmme.2013100104.

Texto completo da fonte
Resumo:
The work presents the Finite element study of the effect of elliptical chords on the static and dynamic strength of tubular T-joints using ANSYS. Two different geometry configurations of the T-joints have been used, namely Type-1 and Type-2. An elastic analysis has been considered. The Static loading conditions used are: axial load, compressive load, In-plane bending (IPB) and Out-plane bending (OPB). The natural frequencies analysis (dynamic loading condition) has also been carried out. The geometry configurations of the T-joints have been used, vertical tubes are called brace and horizontal tubes are called chords. The joint consists of brace joined perpendicular to the circular chord. In this case the ends of the chord are held fixed. The material used is mild steel. Using ANSYS, finite element modeling and analysis of T-joint has been done under the aforementioned loading cases. It is one of the most powerful methods in use but in many cases it is an expensive analysis especially due to elastic–plastic and creep problems. Usually, three dimensional solid elements or shell elements or the combination of two types of elements are used for generating the tubular joints mesh. In tubular joints, usually the fluid induced vibrations cause the joint to fail under resonance. Therefore the natural frequencies analysis is also an important issue here. Generally the empirical results are required as guide or comparison tool for finite element investigation. It is an effective way to obtain confidence in the results derived. Shell elements have been used to model the assembled geometry. Finite element ANSYS results have been validated with the LUSAS FEA and experimental results, that is within the experimentation error limit of ten percentage.
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Rao, T. V. S. R. Appa, Nagesh R. Iyer, J. Rajasankar e G. S. Palani. "Dynamic Response Analysis of Ship Hull Structures". Marine Technology and SNAME News 37, n.º 03 (1 de julho de 2000): 117–28. http://dx.doi.org/10.5957/mt1.2000.37.3.117.

Texto completo da fonte
Resumo:
Finite-element modeling and use of appropriate analytical techniques play a significant role in producing a reliable and economic design for ship hull structures subjected to dynamic loading. The paper presents investigations carried out for the dynamic response analysis of ship hull structures using the finite-element method. A simple and efficient interactive graphical preprocessing technique based on the "keynode" concept and assembly-line procedure is used to develop the finite-element model of the hull structure. The technique makes use of the body plan of a ship hull to build the finite-element model through an interactive session. Stiffened plate/shell finite elements suitable to model the hull structure are formulated and used to model the structure. The finite elements take into account arbitrary placement of stiffeners in an element without increasing the number of degrees-of-freedom of the element. A three-dimensional finite-element model and a procedure based on the Bubnov-Galerkin residual approach are employed to evaluate the effects of interaction between the ship hull and water. Mode superposition technique is used to conduct the dynamic response analysis. The efficiency of the finite elements and the procedures is demonstrated through dynamic analysis of a submerged cantilever plate and a barge when both are subjected to sinusoidal forces. The dynamic responses exhibit expected behavior of the structure and a comparison with the results available in the literature indicate superior performance of the finite element and methodologies developed. Thus, the finite-element models and the procedures are found to be efficient and hence suitable for the dynamic analysis of similar structures.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Saidpatil, Prof Vishal, e Prof S. M. Jadhav Prof. S. M. Jadhav. "Thermal Analysis of Low Prssure Boiler Drum (Pressure Vessel) Using Finite Element Analysis". Indian Journal of Applied Research 3, n.º 9 (1 de outubro de 2011): 248–50. http://dx.doi.org/10.15373/2249555x/sept2013/74.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Muddam, Mr Ramu, e Mr Karthik Anand. "DESIGN & ANALYSIS OF “CONNECTING ROD BY FINITE ELEMENT ANALYSIS USING COMPOSITE MATERIALS". International Journal of Research Publication and Reviews 5, n.º 4 (11 de abril de 2024): 3818–25. http://dx.doi.org/10.55248/gengpi.5.0424.1042.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Zimmermann, Thomas. "The finite element method. Linear static and dynamic finite element analysis". Computer Methods in Applied Mechanics and Engineering 65, n.º 2 (novembro de 1987): 191. http://dx.doi.org/10.1016/0045-7825(87)90013-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Perez, Mario Mourelle. "Finite element handbook". Engineering Analysis with Boundary Elements 8, n.º 4 (agosto de 1991): 215–16. http://dx.doi.org/10.1016/0955-7997(91)90018-o.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Khoromskij, B. N., e J. M. Melenk. "Boundary Concentrated Finite Element Methods". SIAM Journal on Numerical Analysis 41, n.º 1 (janeiro de 2003): 1–36. http://dx.doi.org/10.1137/s0036142901391852.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Goldstein, Charles I. "Preconditioning Nonconforming Finite Element Methods". SIAM Journal on Numerical Analysis 31, n.º 6 (dezembro de 1994): 1623–44. http://dx.doi.org/10.1137/0731084.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Sozutov, A. I. "Groups with Finite Engel Element". Algebra and Logic 58, n.º 3 (julho de 2019): 254–67. http://dx.doi.org/10.1007/s10469-019-09544-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Duprez, Michel, Vanessa Lleras e Alexei Lozinski. "Finite element method with local damage of the mesh". ESAIM: Mathematical Modelling and Numerical Analysis 53, n.º 6 (18 de outubro de 2019): 1871–91. http://dx.doi.org/10.1051/m2an/2019023.

Texto completo da fonte
Resumo:
We consider the finite element method on locally damaged meshes allowing for some distorted cells which are isolated from one another. In the case of the Poisson equation and piecewise linear Lagrange finite elements, we show that the usual a priori error estimates remain valid on such meshes. We also propose an alternative finite element scheme which is optimally convergent and, moreover, well conditioned, i.e. the conditioning number of the associated finite element matrix is of the same order as that of a standard finite element method on a regular mesh of comparable size.
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Ellerby, F. B., R. Wait e A. R. Mitchell. "Finite Element Analysis and Applications". Mathematical Gazette 71, n.º 455 (março de 1987): 83. http://dx.doi.org/10.2307/3616321.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Yadav, Rahul. "Finite Element Analysis using MATLAB". International Journal for Research in Applied Science and Engineering Technology 10, n.º 1 (31 de janeiro de 2022): 764–69. http://dx.doi.org/10.22214/ijraset.2022.39902.

Texto completo da fonte
Resumo:
Abstract: Finite Element Analysis or FEA is the simulation of a physical phenomenon using a numerical mathematic technique referred to as the Finite Element Method or FEM. This process is at the core of mechanical engineering, as well as a variety of other disciplines. It also is one of the key principles used in the development of simulation software. Engineers can use these FEM to reduce the number of physical prototypes and run virtual experiments to optimize their designs. Finite Element Analysis is used in various fields like structural, fluid flow, heat transfer to estimate the behavior of a component in real environment. There now exists growing body of knowledge connected with the development of mathematical models and numerical simulations of physical model. There are various software packages like Ansys, OptiStruct, COMSOL, Solidworks and many more which provide a close estimate in simulation models. Apart from these software MATLAB also has a Partial Differential Equation (PDE) toolbox which enables us to perform these simulations using some built-in functions and codes. However, a computational numerical technique is not an end of design rather it just provides a great estimate of the final component for which the results are only as good as the input provided and the final component in most of the cases require a physical testing in environment which it is meant to perform as a validation. Keywords: Brake pedal, MATLAB, Partial differential equation (PDE) toolbox, Tetrahedral mesh.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Svedin, J. A. M. "Finite-element analysis of chirowaveguides". Electronics Letters 26, n.º 13 (1990): 928. http://dx.doi.org/10.1049/el:19900606.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

YOSHIKAWA, Nobuhiro, Yasuyuki MITSUI, Osamu KUWAZURU e Yoshinori SHIHARA. "Finite Element Quantum Mechanical Analysis". Proceedings of the 1992 Annual Meeting of JSME/MMD 2003 (2003): 473–74. http://dx.doi.org/10.1299/jsmezairiki.2003.0_473.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Chiang, K. N., e R. E. Fulton. "Parallel transient finite element analysis". Computers & Structures 42, n.º 5 (março de 1992): 733–39. http://dx.doi.org/10.1016/0045-7949(92)90185-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Melosh, R. J. "Finite element analysis convergence curves". Finite Elements in Analysis and Design 7, n.º 2 (novembro de 1990): 115–21. http://dx.doi.org/10.1016/0168-874x(90)90003-w.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Forde, Bruce W. R., Ricardo O. Foschi e Siegfried F. Stiemer. "Object-oriented finite element analysis". Computers & Structures 34, n.º 3 (janeiro de 1990): 355–74. http://dx.doi.org/10.1016/0045-7949(90)90261-y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Brown, P. T., e J. R. Booker. "Finite element analysis of excavation". Computers and Geotechnics 1, n.º 3 (janeiro de 1985): 207–20. http://dx.doi.org/10.1016/0266-352x(85)90024-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Ghaboussi, J., e D. Pecknold. "Finite element analysis of excavation". Computers and Geotechnics 2, n.º 2 (janeiro de 1986): 125–26. http://dx.doi.org/10.1016/0266-352x(86)90008-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

J. Trevelyan. "Finite element analysis and applications". Engineering Analysis 3, n.º 2 (junho de 1986): 129. http://dx.doi.org/10.1016/0264-682x(86)90048-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

W., L. B., R. Wait e A. R. Mitchell. "Finite Element Analysis and Applications." Mathematics of Computation 50, n.º 181 (janeiro de 1988): 345. http://dx.doi.org/10.2307/2007937.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia