Literatura científica selecionada sobre o tema "Fine-structure Preservation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Fine-structure Preservation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Fine-structure Preservation"
Fortunato, Franco, Thilo Hackert, Markus W. Büchler e Guido Kroemer. "Retrospective electron microscopy: Preservation of fine structure by freezing and aldehyde fixation". Molecular & Cellular Oncology 3, n.º 6 (27 de outubro de 2016): e1251382. http://dx.doi.org/10.1080/23723556.2016.1251382.
Texto completo da fonteRostaing, Philippe, Robby M. Weimer, Erik M. Jorgensen, Antoine Triller e Jean-Louis Bessereau. "Preservation of Immunoreactivity and Fine Structure of AdultC. elegansTissues Using High-pressure Freezing". Journal of Histochemistry & Cytochemistry 52, n.º 1 (janeiro de 2004): 1–12. http://dx.doi.org/10.1177/002215540405200101.
Texto completo da fonteCox, Donald P. "A New Universal Acrylic Embedding Resin for Both Light and Electron Microcopy". Microscopy Today 2, n.º 4 (julho de 1994): 21–22. http://dx.doi.org/10.1017/s1551929500065585.
Texto completo da fonteRogers, Greg S., e John Frett. "682 PB 198 NICOTIANA FIXATION FOR IMMUNO-LOCALIZATION OF IPTASE". HortScience 29, n.º 5 (maio de 1994): 530e—530. http://dx.doi.org/10.21273/hortsci.29.5.530e.
Texto completo da fonteFischer, T., C. Schmid, M. Kompis, G. Mantokoudis, M. Caversaccio e W. Wimmer. "Effects of temporal fine structure preservation on spatial hearing in bilateral cochlear implant users". Journal of the Acoustical Society of America 150, n.º 2 (agosto de 2021): 673–86. http://dx.doi.org/10.1121/10.0005732.
Texto completo da fonteTolstoy, A. "FINE-GRAINED HIGH-STRENGTH CONCRETE". Construction Materials and Products 3, n.º 1 (8 de julho de 2020): 39–43. http://dx.doi.org/10.34031/2618-7183-2020-3-1-39-43.
Texto completo da fonteMastronarde, David, James Kremer, Eileen O’Toole, Mary Morphew, Mark Ladinsky e Richard McIntosh. "Resources for the Study of Cellular Structure by High Voltage Electron Tomography, Serial Thin Sectioning, Specific Labeling, and Image Analysis". Microscopy and Microanalysis 3, S2 (agosto de 1997): 273–74. http://dx.doi.org/10.1017/s1431927600008254.
Texto completo da fonteYamaguchi, M., Y. Namiki, H. Okada, K. Uematsu, A. Tame, T. Maruyama e Y. Kozuka. "Improved preservation of fine structure of deep-sea microorganisms by freeze-substitution after glutaraldehyde fixation". Journal of Electron Microscopy 60, n.º 4 (13 de maio de 2011): 283–87. http://dx.doi.org/10.1093/jmicro/dfr032.
Texto completo da fontePancaningtyas, Sulistyani. "The evaluation of java fine flavor cocoa propagation through somatic embryogenesis technique for germplasm preservation". E3S Web of Conferences 306 (2021): 01056. http://dx.doi.org/10.1051/e3sconf/202130601056.
Texto completo da fonteWu, Xi, Mingyuan Xie, Wei Wu e Jiliu Zhou. "Nonlocal Mean Image Denoising Using Anisotropic Structure Tensor". Advances in Optical Technologies 2013 (12 de fevereiro de 2013): 1–6. http://dx.doi.org/10.1155/2013/794728.
Texto completo da fonteTeses / dissertações sobre o assunto "Fine-structure Preservation"
Longuefosse, Arthur. "Apprentissage profond pour la conversion d’IRM vers TDM en imagerie thoracique". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0489.
Texto completo da fonteThoracic imaging faces significant challenges, with each imaging modality presenting its own limitations. CT, the gold standard for lung imaging, delivers high spatial resolution but relies on ionizing radiation, posing risks for patients requiring frequent scans. Conversely, lung MRI, offers a radiation-free alternative but is hindered by technical issues such as low contrast and artifacts, limiting its broader clinical use. Recently, UTE-MRI shows promise in addressing some of these limitations, but still lacks the high resolution and image quality of CT, particularly for detailed structural assessment. The primary objective of this thesis is to develop and validate deep learning-based models for synthesizing CT-like images from UTE-MRI. Specifically, we aim to assess the image quality, anatomical accuracy, and clinical applicability of these synthetic CT images in comparison to the original UTE-MRI and real CT scans in thoracic imaging. Initially, we explored the fundamentals of medical image synthesis, establishing the groundwork for MR to CT translation. We implemented a 2D GAN model based on the pix2pixHD framework, optimizing it using SPADE normalization and refining preprocessing techniques such as resampling and registration. Clinical evaluation with expert radiologists showed promising results in comparing synthetic images to real CT scans. Synthesis was further enhanced by introducing perceptual loss, which improved structural details and visual quality, and incorporated 2.5D strategies to balance between 2D and 3D synthesis. Additionally, we emphasized a rigorous validation process using task-specific metrics, challenging traditional intensity-based and global metrics by focusing on the accurate reconstruction of anatomical structures. In the final stage, we developed a robust and scalable 3D synthesis framework by adapting nnU-Net for CT generation, along with an anatomical feature-prioritized loss function, enabling superior reconstruction of critical structures such as airways and vessels. Our work highlights the potential of deep learning-based models for generating high-quality synthetic CT images from UTE-MRI, offering a significant improvement in non-invasive lung imaging. These advances could greatly enhance the clinical applicability of UTE-MRI, providing a safer alternative to CT for the follow-up of chronic lung diseases. Furthermore, a patent is currently in preparation for the adoption of our method, paving the way for potential clinical use
Capítulos de livros sobre o assunto "Fine-structure Preservation"
Griffiths, Gareth. "Fine-Structure Preservation". In Fine Structure Immunocytochemistry, 9–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77095-1_2.
Texto completo da fonteGriffiths, Gareth. "Fixation for Fine Structure Preservation and Immunocytochemistry". In Fine Structure Immunocytochemistry, 26–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77095-1_3.
Texto completo da fonteIsraels, Sara J., e Jon M. Gerrard. "lmmunocytochemical and electron microscopic studies of platelets". In Platelets, 279–98. Oxford University PressOxford, 1996. http://dx.doi.org/10.1093/oso/9780199635382.003.0014.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Fine-structure Preservation"
Zhang, Jiying, Xi Xiao, Long-Kai Huang, Yu Rong e Yatao Bian. "Fine-Tuning Graph Neural Networks via Graph Topology Induced Optimal Transport". In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/518.
Texto completo da fonteZheng, Yifan, Wenjun Ke, Qi Liu, Yuting Yang, Ruizhuo Zhao, Dacheng Feng, Jianwei Zhang e Zhi Fang. "Making LLMs as Fine-Grained Relation Extraction Data Augmentor". In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/736.
Texto completo da fonte