Literatura científica selecionada sobre o tema "Field effect emission"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Field effect emission".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Field effect emission"
Sapkota, Anish, Amir Haghverdi, Claudia C. E. Avila e Samantha C. Ying. "Irrigation and Greenhouse Gas Emissions: A Review of Field-Based Studies". Soil Systems 4, n.º 2 (13 de abril de 2020): 20. http://dx.doi.org/10.3390/soilsystems4020020.
Texto completo da fontePalma, John, e Samson Mil’shtein. "Field effect controlled lateral field emission triode". Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 29, n.º 2 (março de 2011): 02B111. http://dx.doi.org/10.1116/1.3554216.
Texto completo da fonteDencső, Márton, Ágota Horel, Igor Bogunovic e Eszter Tóth. "Effects of Environmental Drivers and Agricultural Management on Soil CO2 and N2O Emissions". Agronomy 11, n.º 1 (29 de dezembro de 2020): 54. http://dx.doi.org/10.3390/agronomy11010054.
Texto completo da fonteVarela, J., V. Réville, A. S. Brun, P. Zarka e F. Pantellini. "Effect of the exoplanet magnetic field topology on its magnetospheric radio emission". Astronomy & Astrophysics 616 (agosto de 2018): A182. http://dx.doi.org/10.1051/0004-6361/201732091.
Texto completo da fonteLitovchenko, V., A. Evtukh, O. Yilmazoglu, K. Mutamba, H. L. Hartnagel e D. Pavlidis. "Gunn effect in field-emission phenomena". Journal of Applied Physics 97, n.º 4 (15 de fevereiro de 2005): 044911. http://dx.doi.org/10.1063/1.1847724.
Texto completo da fonteSrisonphan, Siwapon, Weerawoot Kanokbannakorn e Nithiphat Teerakawanich. "Field emission graphene-oxide-silicon field effect based photodetector". physica status solidi (RRL) - Rapid Research Letters 9, n.º 11 (30 de setembro de 2015): 656–62. http://dx.doi.org/10.1002/pssr.201510199.
Texto completo da fonteZhuang, Gen Huang, Ling Yun Wang e Dao Heng Sun. "The Effect of Temperature on Field Emission Current". Advanced Materials Research 60-61 (janeiro de 2009): 461–64. http://dx.doi.org/10.4028/www.scientific.net/amr.60-61.461.
Texto completo da fonteHuang, Hongxun, Chunhui Zhou, Changshi Xiao, Liang Huang, Yuanqiao Wen, Jianxin Wang e Xin Peng. "Effect of Seasonal Flow Field on Inland Ship Emission Assessment: A Case Study of Ferry". Sustainability 12, n.º 18 (11 de setembro de 2020): 7484. http://dx.doi.org/10.3390/su12187484.
Texto completo da fonteLobanov, V. M., e E. P. Sheshin. "Effect of interference on field electron emission". Technical Physics 56, n.º 2 (fevereiro de 2011): 282–90. http://dx.doi.org/10.1134/s1063784211020204.
Texto completo da fontePaulini, J., T. Klein e G. Simon. "Thermo-field emission and the Nottingham effect". Journal of Physics D: Applied Physics 26, n.º 8 (14 de agosto de 1993): 1310–15. http://dx.doi.org/10.1088/0022-3727/26/8/024.
Texto completo da fonteTeses / dissertações sobre o assunto "Field effect emission"
Sanborn, Graham Patrick. "A thin film triode type carbon nanotube field electron emission cathode". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50302.
Texto completo da fonteLudwick, Jonathan. "Physics of High-Power Vacuum Electronic Systems Based on Carbon Nanotube Fiber Field Emitters". University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1613745398331048.
Texto completo da fonteKong, Xiangliang, Fan Guo, Joe Giacalone, Hui Li e Yao Chen. "The Acceleration of High-energy Protons at Coronal Shocks: The Effect of Large-scale Streamer-like Magnetic Field Structures". IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/626416.
Texto completo da fonteWest, Ryan Matthew. "Work function fluctuation analysis of polyaniline films". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47586.
Texto completo da fonteSeidemann, Johanna. "Iontronic - Étude de dispositifs à effet de champ à base des techniques de grilles liquides ioniques". Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY075/document.
Texto completo da fonteIonic liquids are non-volatile fluids, consisting of cations and anions, which are ionically conducting and electrically insulating and hold very high capacitances. These liquids have the ability to not only to replace solid electrolytes, but to create strongly increased electric fields (>SI{10}{megavoltpercentimetre}) in the so-called electric double layer (EDL) on the electrolyte/channel interface, which leads to the injection of 2D charge carrier densities up to SI{e15}{cm^{-2}}. The remarkably strong gate effect of ionic liquids is diminished in the presence of trapped states and roughness-induced surface disorder, which points out that atomically flat transition metal dichalcogenides of high crystal quality are some of the semiconductors best suited for EDL-gating.We realised EDL-gated field-effect transistors based on multi-walled ce{WS2} nanotubes with operation performance comparable to that of EDL-gated thin flakes of the same material and superior to the performance of backgated ce{WS2} nanotubes. For instance, we observed mobilities of up to SI{80}{squarecentimetrepervoltpersecond} for both p- and n-type charge carriers and our current on-off ratios exceed SI{e5}{} for both polarities. At high electron doping levels, the nanotubes show metallic behaviour down to low temperatures. The use of an electrolyte as topgate dielectric allows the purely electrostatic formation of a pn-junction. We successfully fabricated a light-emitting transistor taking advantage of this utility.The ability of high charge carrier doping suggests an electrostatically induced metal phase or superconductivity in large gap semiconductors. We successfully induced low temperature metallic conduction into intrinsic diamond with hydrogen-terminated surface via field-effect and we observed a gate effect in doped, metallic silicon.Ionic liquids have many advantageous properties, but their applicability suffers from the instability of their liquid body, gate leakage currents and absorption of impurities. An effective way to bypass most of these problems, while keeping the ability of ultra-high charge carrier injection, is the gelation of ionic liquids. We even went one step further and fabricated modified ion gel films with the cations fixed on one surface and the anions able to move freely through the film. With this tool, we realised a novel low-power field-effect diode
Quentin-Schindler, Marie. "Étude et développement d’une source d’ions équipée d’une cathode à nanotubes de carbone, émettrice d’électrons par effet de champ avec une application aux tubes neutroniques scellés". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS251.
Texto completo da fonteThis doctoral project, carried out at Sodern, a subsidiary of ArianeGroup, is dedicated to the optimization of sealed neutron tubes. These devices are used for material analysis, primarily in the oil and mining sectors. They operate on the principle of miniaturized particle accelerators, generating neutrons through the deuterium-tritium fusion reaction.The central issue of this research concerns the ion source of the tubes, currently based on a cold Penning-type cathode. This configuration presents significant limitations, such as inefficient control of the ion-generating plasma discharge. This problem is exacerbated by jitter, which characterizes variability in pulse widths, and a delay in ignition, which is the lag between powering the source and ion extraction. To overcome these obstacles while limiting power input, the introduction of a carbon nanotube (CNT) based electron-emitting cathode, operating by field effect, is considered due to its ability to emit under relatively low potential and without added temperature.The methodology adopted initially includes tests of CNT electron emission to evaluate their practical integration into the ion source. The operational parameters examined include the gaseous environment in the pressure range of the tubes, lifespan, repeatability, temperature, and neutron pulsation. These investigations led to the development of a modified ion source, integrating a CNT source. This integration was first carried out by simulation on CST Studio software, then by the design of a prototype. This prototype was realized and tested in the laboratory to characterize its temporal properties. The results show a significant reduction in ignition delay and jitter, although this has led to irreversible degradation of the CNTs after a few hours of operation. These tests show that a minimum emission current would allow these improvements.In conclusion, this thesis demonstrates the potential of adding an electron source to improve the temporal performance of a Penning-type ion source
Cooper, Joseph Andrew. "Investigation of the effects of process variables on the properties of europium-doped yttrium oxide phosphor". Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/20503.
Texto completo da fonteAndrew), Patterson Alex A. (Alex. "An analytical framework for field electron emission, incorporating quantum- confinement effects". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/84863.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (pages 141-151).
As field electron emitters shrink to nanoscale dimensions, the effects of quantum confinement of the electron supply and electric field enhancement at the emitter tip play a significant role in determining the emitted current density (ECD). Consequently, the Fowler-Nordheim (FN) equation, which primarily applies to field emission from the planar surface of a bulk metal may not be valid for nanoscale emitters. While much effort has focused on studying emitter tip electrostatics, not much attention has been paid to the consequences of a quantum-confined electron supply. This work builds an analytical framework from which ECD equations for quantum-confined emitters of various geometries and materials can be generated and the effects of quantum confinement of the electron supply on the ECD can be studied. ECD equations were derived for metal emitters from the elementary model and for silicon emitters via a more physically-complete version of the elementary model. In the absence of field enhancement at the emitter tip, decreasing an emitter's dimensions is found to decrease the total ECD. When the effects of field enhancement are incorporated, the ECD increases with decreasing transverse emitter dimensions until a critical dimension dpeak, below which the reduced electron supply becomes the limiting factor for emission and the ECD decreases. Based on the forms of the ECD equations, alternate analytical methods to Fowler-Nordheim plots are introduced for parameter extraction from experimental field emission data. Analysis shows that the FN equation and standard analysis procedures over-predict the ECD from quantum-confined emitters. As a result, the ECD equations and methods introduced in this thesis are intended to replace the Fowler-Nordheim equation and related analysis procedures when treating field emission from suitably small field electron emitters.
by Alex A. Patterson.
S.M.
Mo, Yudong. "The Effects of Residual Gases on the Field Emission Properties of ZnO, GaN, ZnS Nanostructures, and the Effects of Light on the Resistivity of Graphene". Thesis, University of North Texas, 2014. https://digital.library.unt.edu/ark:/67531/metadc500202/.
Texto completo da fonteNarayanan, Sruthi Annapoorny. "Effect of magnetic seed fields on Lyman Alpha emission from distant quasars". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105651.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (pages 55-57).
There are indications that weak magnetic fields originating in the early Universe and magnified via magnetohydrodynamic (MHD) processes could cause perturbations in the thermodynamic state of the gas in the intergalactic medium which affect the Lyman-Alpha spectrum we observe. In this work we investigate to what extent the properties of the Lyman-Alpha forest are sensitive to the presence of large-scale cosmological magnetic fields as a function of the seed field intensity. To do so, we develop and use a series of numerical tools to analyze previously constructed cosmological MHD simulations that include state-of-the-art implementation of the relevant physical processes for galaxy formation. The inclusion of these physical mechanisms is crucial to get the level of magnetic field amplification currently observed in the structures that populate our Universe. With these tools we isolate characteristics, namely the Flux Probability Density Function and the Power Spectrum, of the Lyman-Alpha forest that are sensitive to the magnetic field strength. We then examine the implications of our results.
by Sruthi Annapoorny Narayanan.
S.B.
Livros sobre o assunto "Field effect emission"
Prasad, Ghatak Kamakhya, ed. Fowler-Nordheim field emission: Effects in semiconductor nanostructures. Heidelberg: Springer, 2012.
Encontre o texto completo da fonteM, Katkov V., e Strakhovenko V. M, eds. Electromagnetic processes at high energies in oriented single crystals. Singapore: World Scientific, 1998.
Encontre o texto completo da fonteAssociation, Western Interprovincial Scientific Studies. Western Canada study of animal health effects associated with exposure to emissions from oil and natural gas field facilities: A study of 33,000 cattle in British Columbia, Alberta, and Saskatchewan. Calgary, Alta: WISSA, 2006.
Encontre o texto completo da fonteButusov, Oleg, e Valeriy Meshalkin. Fundamentals of informatization and mathematical modeling of ecological systems. ru: INFRA-M Academic Publishing LLC., 2023. http://dx.doi.org/10.12737/1477254.
Texto completo da fonte(Editor), Nebojsa Nakicenovic, e Robert Swart (Editor), eds. Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2000.
Encontre o texto completo da fonteSolymar, L., D. Walsh e R. R. A. Syms. The free electron theory of metals. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198829942.003.0006.
Texto completo da fonteGhatak, Kamakhya Prasad, e Sitangshu Bhattacharya. Fowler-Nordheim Field Emission: Effects in Semiconductor Nanostructures. Springer Berlin / Heidelberg, 2014.
Encontre o texto completo da fonteGhatak, Kamakhya Prasad, e Sitangshu Bhattacharya. Fowler-Nordheim Field Emission: Effects in Semiconductor Nanostructures. Springer, 2012.
Encontre o texto completo da fonteKolmičkovs, Antons. Electric Field Effect on Combustion of Pelletized Biomass in Swirling Flow. RTU Press, 2022. http://dx.doi.org/10.7250/9789934227257.
Texto completo da fonteNitrous oxide emissions from rice fields: Past, present, and future. Hauppauge, NY: Nova Science Publishers, 2009.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Field effect emission"
Villarreal, Carlos, R. Jáuregui e S. Hacyan. "Dynamical Casimir Effect, “Particle Emission” and Squeezing". In Quantum Field Theory Under the Influence of External Conditions, 46. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-663-01204-7_6.
Texto completo da fonteSmolyaninov, I. I. "Light Emission from the Tunnel Junction of the STM. Possible Role of Tcherenkov Effect". In Near Field Optics, 353–60. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1978-8_40.
Texto completo da fonteKazarnovskii, M. V., e A. V. Stepanov. "Recoilless γ Emission and Absorption by Atoms in a Magnetic Field". In Proceedings of the Dubna Conference on the Mössbauer Effect 1963, 148–51. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-4848-9_14.
Texto completo da fonteLee, Shih-Fong, Li-Ying Lee e Yung-Ping Chang. "The Effect of Hydrogen Plasma Treatment on the Field-Emission Characteristics of Silicon Nanowires". In Lecture Notes in Electrical Engineering, 931–37. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04573-3_114.
Texto completo da fonteZaman, M., K. Kleineidam, L. Bakken, J. Berendt, C. Bracken, K. Butterbach-Bahl, Z. Cai et al. "Automated Laboratory and Field Techniques to Determine Greenhouse Gas Emissions". In Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques, 109–39. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55396-8_3.
Texto completo da fonteLuo, J. "On the Stress Field and Dislocation Emission of an Elliptically Blunted Mode III Crack with Surface Stress Effect". In IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures, 277–87. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4911-5_24.
Texto completo da fonteFarías, Oscar, Pablo Cornejo, Cristian Cuevas, Jorge Jimenez, Meylí Valín, Claudio Garcés e Sebastian Gallardo. "Design of a Condensing Heat Recovery Integrated with an Electrostatic Precipitator for Wood Heaters". In Proceedings of the XV Ibero-American Congress of Mechanical Engineering, 210–16. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-38563-6_31.
Texto completo da fonteKumar, Abhishek. "Creating Effects with Particle Emissions and Fields/Solvers". In Beginning VFX with Autodesk Maya, 109–38. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-7857-4_6.
Texto completo da fonteZaman, M., K. Kleineidam, L. Bakken, J. Berendt, C. Bracken, K. Butterbach-Bahl, Z. Cai et al. "Climate-Smart Agriculture Practices for Mitigating Greenhouse Gas Emissions". In Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques, 303–28. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55396-8_8.
Texto completo da fontede Colle, Fabio, e Alejandro Raga. "Effects of the Magnetic Field on the Hα Emission from Jets". In Virtual Astrophysical Jets, 173–80. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2664-5_19.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Field effect emission"
Palma, John F., e Samson Mil'shtein. "P1.4: Field effect controlled lateral field emission triode". In 2010 23rd International Vacuum Nanoelectronics Conference (IVNC). IEEE, 2010. http://dx.doi.org/10.1109/ivnc.2010.5563165.
Texto completo da fonteYafyasov, A., V. Bogevolnov, A. Tomilov, B. Pavlov e G. Fursey. "Modelling of the electron field emission effect on the low dimensional carbon structures". In 2014 2nd International Conference on Emission Electronics (ICEE). IEEE, 2014. http://dx.doi.org/10.1109/emission.2014.6893980.
Texto completo da fonteKnap, Wojciech, Nina V. Dyakonova, Franz Schuster, Dominique Coquillat, Frédéric Teppe, Benoît Giffard, Dmytro B. But et al. "Terahertz detection and emission by field-effect transistors". In SPIE Optical Engineering + Applications, editado por Manijeh Razeghi, Alexei N. Baranov, Henry O. Everitt, John M. Zavada e Tariq Manzur. SPIE, 2012. http://dx.doi.org/10.1117/12.930091.
Texto completo da fonteBaturin, Stanislav S., Alexander V. Zinovev e Sergey V. Baryshev. "Vacuum effect on field emission I-V curves". In 2017 30th International Vacuum Nanoelectronics Conference (IVNC). IEEE, 2017. http://dx.doi.org/10.1109/ivnc.2017.8051638.
Texto completo da fonteYang, Y., S. Huo, L. H. Jiang, Y. C. Kong, T. S. Chen, H. Zhou, A. S. Teh, T. Butler, D. Hasko e G. A. Amaratunga. "Carbon Nanotube Lateral Field Emission Device with Embedded Field Effect Transistor". In 2018 IEEE International Conference on Electron Devices and Solid State Circuits (EDSSC). IEEE, 2018. http://dx.doi.org/10.1109/edssc.2018.8487091.
Texto completo da fonteTao, Zhi, Xiang Liu, Wei Lei, Chi Li e Yuxuan Chen. "Photo enhanced QDs/ZnO-nanowire field-emission type field-effect transistor". In 2015 IEEE International Vacuum Electronics Conference (IVEC). IEEE, 2015. http://dx.doi.org/10.1109/ivec.2015.7223927.
Texto completo da fonteLiu, Thomas, David Morris, Jonathan Zagel, Codrin Cionca, Yang Li, Christopher Smith, Alexandru Riposan, Alec Gallimore, Brian Gilchrist e Roy Clarke. "Use of Boron Nitride for Field Effect Electron Emission". In 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-5253.
Texto completo da fonteDyakonova, N., A. El Fatimy, J. Lusakowskil, W. Knap, M. I. Dyakonov, M. A. Poisson, E. Morvan et al. "Room-temperature terahertz emission from nanometer field-effect transistors". In >2006 Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics. IEEE, 2006. http://dx.doi.org/10.1109/icimw.2006.368353.
Texto completo da fonteSchulz, S. "Field effect enhanced carrier-emission from InAs Quantum Dots". In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994352.
Texto completo da fonteLiao, M. X., S. Z. Deng, N. S. Xu e Jun Chen. "Photosensitivity effect of field emission from zinc oxide nanowires". In 2012 25th International Vacuum Nanoelectronics Conference (IVNC). IEEE, 2012. http://dx.doi.org/10.1109/ivnc.2012.6316961.
Texto completo da fonteRelatórios de organizações sobre o assunto "Field effect emission"
Porter, Troy A., Igor V. Moskalenko e Andrew W. Strong. Inverse Compton Emission from Galactic Supernova Remnants: Effect of the Interstellar Radiation Field. Office of Scientific and Technical Information (OSTI), agosto de 2006. http://dx.doi.org/10.2172/888781.
Texto completo da fonteTong, W., T. E. Felter, L. S. Pan, S. Anders, A. Cossy-Facre e T. Stammler. The effect of aspect ratio and sp2/sp3 content on the field emission properties of carbon films grown by Ns-spiked PECVD. Office of Scientific and Technical Information (OSTI), abril de 1998. http://dx.doi.org/10.2172/666026.
Texto completo da fonteCowell, Luke, Alejandro Camou, Ivan Carlos e Dustin Truesdel. PR-283-16201-R01 Improved SoLoNOx Taurus 60 Control Algorithm to Reduce Part Load Emissions. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), agosto de 2018. http://dx.doi.org/10.55274/r0011510.
Texto completo da fonteBusby, Ryan, Morgan Conrady, Kyoo Jo e Donald Cropek. Characterising earth scent. Engineer Research and Development Center (U.S.), fevereiro de 2024. http://dx.doi.org/10.21079/11681/48262.
Texto completo da fonteOttinger, P. F., G. Cooperstein, J. W. Schumer e S. B. Swanekamp. Self-Magnetic Field Effects on Electron Emission as the Critical Current is Approached. Office of Scientific and Technical Information (OSTI), setembro de 2001. http://dx.doi.org/10.2172/1185204.
Texto completo da fonteOttinger, P. F., G. Cooperstein, J. W. Schumer e S. B. Swanekamp. Self-Magnetic Field Effects on Electron Emission as the Critical Current is Approached. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2001. http://dx.doi.org/10.21236/ada390441.
Texto completo da fonteKlausmeier. L51483 Evaluation of EPA Method 20 Ambient Correction Procedure. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), maio de 1985. http://dx.doi.org/10.55274/r0010652.
Texto completo da fonteFowler. L51754 Field Application of Electronic Gas Admission with Cylinder Pressure Feedback for LB Engines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), junho de 1996. http://dx.doi.org/10.55274/r0010363.
Texto completo da fonteAlmutairi, Hossa, e Axel Pierru. Assessing Climate Mitigation Benefits of Public Support to CCS-EOR: An Economic Analysis. King Abdullah Petroleum Studies and Research Center, junho de 2023. http://dx.doi.org/10.30573/ks--2023-dp12.
Texto completo da fonteKhalil, M. A. K., e R. A. Rasmussen. Methane emissions from rice fields: The effects of climatic and agricultural factors. Final report, March 1, 1994--April 30, 1997. Office of Scientific and Technical Information (OSTI), outubro de 1997. http://dx.doi.org/10.2172/534483.
Texto completo da fonte