Literatura científica selecionada sobre o tema "Femtosecond pules"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Femtosecond pules".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Femtosecond pules"
Renard, William, Clément Chan, Antoine Dubrouil, Jérôme Lhermite, Giorgio Santarelli e Romain Royon. "Agile femtosecond synchronizable laser source from a gated CW laser". Laser Physics Letters 19, n.º 7 (31 de maio de 2022): 075105. http://dx.doi.org/10.1088/1612-202x/ac7133.
Texto completo da fonteYe, Hanyu, Florian Leroy, Lilia Pontagnier, Giorgio Santarelli, Johan Boullet e Eric Cormier. "Non-linear amplification to 200 W of an electro-optic frequency comb with GHz tunable repetition rates". EPJ Web of Conferences 287 (2023): 07025. http://dx.doi.org/10.1051/epjconf/202328707025.
Texto completo da fonteZeng, Li, Xiaofan Wang, Yifan Liang, Huaiqian Yi, Weiqing Zhang e Xueming Yang. "Chirped-Pulse Amplification in an Echo-Enabled Harmonic-Generation Free-Electron Laser". Applied Sciences 13, n.º 18 (14 de setembro de 2023): 10292. http://dx.doi.org/10.3390/app131810292.
Texto completo da fonteSaha, Asit. "Bifurcation analysis of the propagation of femtosecond pulses for the Triki-Biswas equation in monomode optical fibers". International Journal of Modern Physics B 33, n.º 29 (20 de novembro de 2019): 1950346. http://dx.doi.org/10.1142/s0217979219503466.
Texto completo da fonteZhu, Chang Jun, Jun Fang He, Xue Jun Zhai, Bing Xue e Chong Hui Zhang. "Two Synchronized Operating Modes of Femtosecond and Picosecond Pulses in a Dual-Wavelength Laser". Materials Science Forum 663-665 (novembro de 2010): 284–87. http://dx.doi.org/10.4028/www.scientific.net/msf.663-665.284.
Texto completo da fonteJana, Kamalesh, Amit D. Lad, Ankit Dulat, Yash M. Ved e G. Ravindra Kumar. "Ultrafast time-resolved two-dimensional velocity mapping of the hot-dense plasmas generated by intense-laser pulses". AIP Advances 12, n.º 9 (1 de setembro de 2022): 095112. http://dx.doi.org/10.1063/5.0102048.
Texto completo da fonteSpence, Stephanie, Takaaki Harada, Athanasios Margiolakis, Skylar Deckoff-Jones, Aaron N. Shugar, James F. Hamm, Keshav M. Dani e Anya R. Dani. "Applicability of Femtosecond Lasers in the Cross-section Sampling of Works of Art". MRS Advances 2, n.º 33-34 (2017): 1801–4. http://dx.doi.org/10.1557/adv.2017.242.
Texto completo da fonteNeutze, Richard. "Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers". Philosophical Transactions of the Royal Society B: Biological Sciences 369, n.º 1647 (17 de julho de 2014): 20130318. http://dx.doi.org/10.1098/rstb.2013.0318.
Texto completo da fonteRudenkov, A. S., V. E. Kisel, A. S. Yasukevich, K. L. Hovhannesyan, A. G. Petrosyan e N. V. Kuleshov. "Yb:CALYO-based femtosecond chirped pulse regenerative amplifier for temporally resolved pump-probe spectroscopy". Devices and Methods of Measurements 9, n.º 3 (17 de setembro de 2018): 205–14. http://dx.doi.org/10.21122/2220-9506-2018-9-3-205-214.
Texto completo da fonteZhu, Jianqiang, Xinglong Xie, Meizhi Sun, Qunyu Bi e Jun Kang. "A Novel Femtosecond Laser System for Attosecond Pulse Generation". Advances in Optical Technologies 2012 (15 de janeiro de 2012): 1–6. http://dx.doi.org/10.1155/2012/908976.
Texto completo da fonteTeses / dissertações sobre o assunto "Femtosecond pules"
Charpin, Pierre-Jean. "Modélisation de l'interaction laser-plasma dans les faisceaux de Bessel femtoseconde". Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://indexation.univ-fcomte.fr/nuxeo/site/esupversions/fe2dc0aa-3386-4ecd-a96f-7f70a3113aa7.
Texto completo da fonteFemtosecond pulses shaped as Bessel beams create dense nano-plasma in dielectrics, leading to the formation of very high aspect ratio nano-voids for microelectronics applications. The modeling of laser-plasma interaction is very important to understand the spatio-temporal evolution of plasma creation and energy deposition by the femtosecond laser pulse. This will allow the development of highly efficient laser-matter interaction in other geometries and materials. The thesis aims to adapt ionization and plasma laser interaction models, to develop tools for the analysis of experiments, in order to converge towards a predictive model. Translated with www.DeepL.com/Translator (free version)
Wefers, Marc Michael. "Femtosecond optical pulse shaping and multiple-pulse femtosecond spectroscopy". Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/10597.
Texto completo da fonteFernández, González Alma. "Chirped pulse oscillators generating microjoule femtosecond pulses at megahertz repetition rate /". [S.l.] : [s.n.], 2007. http://edoc.ub.uni-muenchen.de/archive/00006967.
Texto completo da fonteFernández, González Alma. "Chirped Pulse Oscillators: Generating microjoule femtosecond pulses at megahertz repetition rate". Diss., lmu, 2007. http://nbn-resolving.de/urn:nbn:de:bvb:19-69673.
Texto completo da fonteBelloni, Valeria. "Spatial and temporal pulse shaping for ultrafast laser materials processing". Electronic Thesis or Diss., Bourgogne Franche-Comté, 2023. http://www.theses.fr/2023UBFCD055.
Texto completo da fonteUltrafast laser processing has gained significant attention in industrial applications due to its ability to achieve precise and high-quality material ablation. However, laser constraints such as pulse energy and repetition rates have limited the throughput of ultrafast laser processes, especially in industrial settings.In this framework, customizing the spatial and temporal profiles of laser beams can enhance the interaction between the laser and the material. Beam shaping techniques play a crucial role in optimizing the performance of ultrafast laser materials processing and reaching previously inaccessible regimes. In parallel, ultrafast lasers operating at GHz repetition rates deliver a significantly higher number of pulses per unit of time compared to conventional laser sources. Splitting a single pulse into several sub-pulses with high repetition rate seems to be an effective method to increase the ablation rate in laser processing.This thesis explores the possibility of ultrafast laser systems with GHz repetition rates and advanced beam shaping techniques to improve ultrafast laser processing. The Bessel beam is particularly beneficial in processing transparent materials thanks to its robustness to non-linear distortions. A high-order Bessel beam is used in this thesis to generate, for the first time, positive nanopillars with a single laser pulse across the surface of sapphire. In addition, a new setup for highly focused Bessel beams has been developed to investigate new opportunities in silicon processing. Finally, a GHz repetition laser source, in a new regime up to 15 GHz, has been used to process silicon. Promising results were obtained with this very high repetition rate with a Gaussian beam and top-hat beam shaping
Chin, Roger S. "Femtosecond laser pulse compression". Thesis, University of British Columbia, 1991. http://hdl.handle.net/2429/29799.
Texto completo da fonteScience, Faculty of
Physics and Astronomy, Department of
Graduate
Dooley, Patrick W. Corkum Paul B. "Molecular imaging using femtosecond laser pulses". *McMaster only, 2003.
Encontre o texto completo da fonteKafka, Kyle R. P. "Laser-Induced Damage with Femtosecond Pulses". The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1483661596059632.
Texto completo da fonteChanal, Margaux. "Space-time study of energy deposition with intense infrared laser pulses for controlled modification inside silicon". Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0488/document.
Texto completo da fonteThe modification of bulk-silicon is realized today with infrared nanosecond lasers. However, the interest regime for controlled modifications inside transparent materials is femtosecond pulses. Today, there is no demonstration of a permanent modification in bulk-Si with ultra-short laser pulses (100 fs). To increase our knowledge on the interaction between femtosecond lasers and silicon, we have developedultra-fast infrared microscopy experiments. First, we characterize the microplasma confined inside the bulk, being the generation of free-carriers under nonlinear ionization processes, followed by the complete relaxation of the material. These results, combined with the reconstruction of the beam propagation inside silicon, demonstrate that the energy deposition is strongly limited by nonlinear absorption andpropagation effects. This analysis has been confirmed by a numerical model simulating the nonlinear propagation of the femtosecond pulse. The understanding of this clamping has allowed us the development of new experimental arrangements, leading to the modification of the bulk of Si with short pulses
Bowlan, Pamela. "Measuring the spatiotemporal electric". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28188.
Texto completo da fonteCommittee Chair: Rick Trebino; Committee Member: Jennifer Curtis; Committee Member: John Buck; Committee Member: Mike Chapman; Committee Member: Stephen Ralph.
Livros sobre o assunto "Femtosecond pules"
Rullière, Claude, ed. Femtosecond Laser Pulses. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2.
Texto completo da fonteRullière, Claude, ed. Femtosecond Laser Pulses. New York, NY: Springer New York, 2005. http://dx.doi.org/10.1007/b137908.
Texto completo da fonteAkhmanov, S. A. Optics of femtosecond laser pulses. New York: American Institute of Physics, 1992.
Encontre o texto completo da fonteMitsuru, Uesaka, ed. Femtosecond beam science. London: Imperial College Press, 2005.
Encontre o texto completo da fonte1939-, Hannaford Peter, ed. Femtosecond laser spectroscopy. New York, NY: Springer, 2005.
Encontre o texto completo da fontePaul-Henri, Barret, e Palmer Michael 1962-, eds. High power and femtosecond lasers: Properties, materials, and applications. Hauppauge, NY: Nova Science Publishers, 2009.
Encontre o texto completo da fonteDiels, Jean-Claude. Ultrashort laser pulse phenomena: Fundamentals, techniques, and applications on a femtosecond time scale. San Diego, Calif: Academic Press, 1995.
Encontre o texto completo da fonteSchreiber, Elmar. Femtosecond real-time spectroscopy of small molecules and clusters. New York: Springer, 1998.
Encontre o texto completo da fonteSigrid, Avrillier, Tualle Jean-Michel, Society of Photo-optical Instrumentation Engineers. e European Optical Society, eds. Femtosecond laser applications in biology: 29 April 2004, Strasbourg, France. Bellingham, Wash: SPIE, 2004.
Encontre o texto completo da fonte1956-, Rudolph Wolfgang, ed. Ultrashort laser pulse phenomena: Fundamentals, techniques, and applications on a femtosecond time scale. 2a ed. Amsterdam: Elsevier / Academic Press, 2006.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Femtosecond pules"
Hirlimann, C. "Laser Basics". In Femtosecond Laser Pulses, 1–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_1.
Texto completo da fonteBonvalet, A., e M. Joffre. "Terahertz Femtosecond Pulses". In Femtosecond Laser Pulses, 285–305. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_10.
Texto completo da fonteHirlimann, C. "Pulsed Optics". In Femtosecond Laser Pulses, 25–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_2.
Texto completo da fonteDucasse, A., C. Rullière e B. Couillaud. "Methods for the Generation of Ultrashort Laser Pulses: Mode-Locking". In Femtosecond Laser Pulses, 53–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_3.
Texto completo da fonteHirlimann, C. "Further Methods for the Generation of Ultrashort Optical Pulses". In Femtosecond Laser Pulses, 83–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_4.
Texto completo da fonteAmand, T., e X. Marie. "Pulsed Semiconductor Lasers". In Femtosecond Laser Pulses, 111–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_5.
Texto completo da fonteSalin, F. "How to Manipulate and Change the Characteristics of Laser Pulses". In Femtosecond Laser Pulses, 159–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_6.
Texto completo da fonteSarger, L., e J. Oberlé. "How to Measure the Characteristics of Laser Pulses". In Femtosecond Laser Pulses, 177–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_7.
Texto completo da fonteRullière, C., T. Amand e X. Marie. "Spectroscopic Methods for Analysis of Sample Dynamics". In Femtosecond Laser Pulses, 203–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_8.
Texto completo da fonteJoffre, M. "Coherent Effects in Femtosecond Spectroscopy: A Simple Picture Using the Bloch Equation". In Femtosecond Laser Pulses, 261–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_9.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Femtosecond pules"
Gaafar, Mahmoud A., Markus Ludwig, Kai Wang, Thibault Wildi, Thibault Voumard, Milan Sinobad, Jan Lorenzen et al. "Integrated Femtosecond Pulse Amplifier". In CLEO: Applications and Technology, AM3J.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.am3j.4.
Texto completo da fonteChen, Yi-Hao, Jeffrey Moses e Frank Wise. "Long-wave-infrared pulse generation in H2-filled hollow-core fiber". In CLEO: Science and Innovations, SM3Q.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sm3q.2.
Texto completo da fonteZacharias, Thomas, Robert Gray, James Williams, Luis Ledezma e Alireza Marandi. "Femtosecond Pulse Characterization using Nanophotonic Parametric Amplification". In CLEO: Science and Innovations, SM4L.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sm4l.2.
Texto completo da fonteFlöry, T., V. Stummer, J. Pupeikis, B. Willenberg, A. Nussbaum-Lapping, F. Valduga de Almeida Camargo, M. Barkauskas et al. "Nonlinear time-resolved spectroscopy with extremely high temporal dynamic range". In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_si.2023.sm2f.2.
Texto completo da fonteBecker, P. C., C. H. Brito Cruz e A. G. Prosser. "Generation of Sub-100 Femtosecond Pulses Tunable in the 690-750 nm Range". In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.pdp2.
Texto completo da fonteShah, Jay D., Tissa C. Gunaratne, Xin Zhu, Vadim Lozovoy e Marcos Dantus. "Effect of Pulse Shaping on Micromachining Transparent Dielectrics". In Femtosecond Laser Microfabrication. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/lm.2009.lmtua4.
Texto completo da fonteJuodkazis, Saulius, e Hiroaki Misawa. "Three-Dimensional Structuring of Materials by Femtosecond Laser Pulses". In Femtosecond Laser Microfabrication. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/lm.2009.lmtub1.
Texto completo da fonteKnoesen, A., D. R. Yankelevich, A. Dienes, R. W. Schoenlein e C. V. Shank. "Femtosecond second harmonic generation and autocorrelation applications using nonlinear poled polymeric thin films". In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.thmm35.
Texto completo da fonteDubov, M., T. D. P. Allsop, S. R. Natarajan, V. K. Mezentsev e I. Bennion. "Curvilinear Low-Loss Waveguides in Borosilicate Glass Fabricated by Femtosecond Chirp-pulse Oscillator". In Femtosecond Laser Microfabrication. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/lm.2009.lmtuc6.
Texto completo da fonteOkhrimchuk, Andrey G., Vladimir Mezentsev, Holger Schmitz, Mykhaylo Dubov e Ian Bennion. "Cascaded nonlinear absorption of laser pulse energy in femtosecond microfabrication. Experiment, numerics, and theory". In Femtosecond Laser Microfabrication. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/lm.2009.lmtua6.
Texto completo da fonteRelatórios de organizações sobre o assunto "Femtosecond pules"
G. Shvets, N. J. Fisch, A. Pukhov e J. Meyer-ter-Vehn. Pulse compression in plasma: Generation of femtosecond pulses without CPA. Office of Scientific and Technical Information (OSTI), julho de 2000. http://dx.doi.org/10.2172/758641.
Texto completo da fonteLukofsky, David, Marc Currie e Ulf Oesterberg. Water Transmission of 1440-nm Femtosecond Pulses. Fort Belvoir, VA: Defense Technical Information Center, abril de 2009. http://dx.doi.org/10.21236/ada499941.
Texto completo da fonteIppen, Erich P. Optical Phase Control of Ultrashort Femtosecond Pulse. Fort Belvoir, VA: Defense Technical Information Center, junho de 1998. http://dx.doi.org/10.21236/ada413214.
Texto completo da fonteAlexander, Dennis R., Jianchao Li, Haifeng Zhang e David Doerr. Transmission Measurements of Femtosecond Laser Pulses Through Aerosols. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2003. http://dx.doi.org/10.21236/ada419719.
Texto completo da fonteKuska, M. Interferometric second-harmonic-generation autocorrelator for characterizing femtosecond pulses. Office of Scientific and Technical Information (OSTI), novembro de 1989. http://dx.doi.org/10.2172/7139136.
Texto completo da fonteBerezhiani, V. I., S. M. Mahajan e I. G. Murusidze. A photon accelerator -- Large blueshifting of femtosecond pulses in semiconductors. Office of Scientific and Technical Information (OSTI), abril de 1997. http://dx.doi.org/10.2172/481608.
Texto completo da fonteHuang, Z. Femtosecond X-ray Pulses From a frequency chirped SASE FEL. Office of Scientific and Technical Information (OSTI), janeiro de 2003. http://dx.doi.org/10.2172/826693.
Texto completo da fonteDitmire, Todd. High Intensity Femtosecond XUV Pulse Interactions with Atomic Clusters: Final Report. Office of Scientific and Technical Information (OSTI), outubro de 2016. http://dx.doi.org/10.2172/1328857.
Texto completo da fonteFainman, Y. Nonlinear Spatio-Temporal Processing of Femtosecond Pulses for Ultrahigh Bandwidth Communication. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1999. http://dx.doi.org/10.21236/ada371188.
Texto completo da fonteCampbell, Benjamin, e Jeremy Andrew Palmer. Investigation of temporal contrast effects in femtosecond pulse laser micromachining of metals. Office of Scientific and Technical Information (OSTI), junho de 2006. http://dx.doi.org/10.2172/887259.
Texto completo da fonte