Artigos de revistas sobre o tema "Federate learning"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Federate learning".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Oktian, Yustus Eko, Brian Stanley e Sang-Gon Lee. "Building Trusted Federated Learning on Blockchain". Symmetry 14, n.º 7 (8 de julho de 2022): 1407. http://dx.doi.org/10.3390/sym14071407.
Texto completo da fonteLi, Yanbin, Yue Li, Huanliang Xu e Shougang Ren. "An Adaptive Communication-Efficient Federated Learning to Resist Gradient-Based Reconstruction Attacks". Security and Communication Networks 2021 (22 de abril de 2021): 1–16. http://dx.doi.org/10.1155/2021/9919030.
Texto completo da fonteBektemyssova, G. U., G. S. Bakirova, Sh G. Yermukhanbetova, A. Shyntore, D. B. Umutkulov e Zh S. Mangysheva. "Analysis of the relevance and prospects of application of federate training". Bulletin of the National Engineering Academy of the Republic of Kazakhstan 92, n.º 2 (30 de junho de 2024): 56–65. http://dx.doi.org/10.47533/2024.1606-146x.26.
Texto completo da fonteShkurti, Lamir, e Mennan Selimi. "AdaptiveMesh: Adaptive Federate Learning for Resource-Constrained Wireless Environments". International Journal of Online and Biomedical Engineering (iJOE) 20, n.º 14 (14 de novembro de 2024): 22–37. http://dx.doi.org/10.3991/ijoe.v20i14.50559.
Texto completo da fonteKholod, Ivan, Evgeny Yanaki, Dmitry Fomichev, Evgeniy Shalugin, Evgenia Novikova, Evgeny Filippov e Mats Nordlund. "Open-Source Federated Learning Frameworks for IoT: A Comparative Review and Analysis". Sensors 21, n.º 1 (29 de dezembro de 2020): 167. http://dx.doi.org/10.3390/s21010167.
Texto completo da fonteSrinivas, C., S. Venkatramulu, V. Chandra Shekar Rao, B. Raghuram, K. Vinay Kumar e Sreenivas Pratapagiri. "Decentralized Machine Learning based Energy Efficient Routing and Intrusion Detection in Unmanned Aerial Network (UAV)". International Journal on Recent and Innovation Trends in Computing and Communication 11, n.º 6s (13 de junho de 2023): 517–27. http://dx.doi.org/10.17762/ijritcc.v11i6s.6960.
Texto completo da fonteTabaszewski, Maciej, Paweł Twardowski, Martyna Wiciak-Pikuła, Natalia Znojkiewicz, Agata Felusiak-Czyryca e Jakub Czyżycki. "Machine Learning Approaches for Monitoring of Tool Wear during Grey Cast-Iron Turning". Materials 15, n.º 12 (20 de junho de 2022): 4359. http://dx.doi.org/10.3390/ma15124359.
Texto completo da fonteLaunet, Laëtitia, Yuandou Wang, Adrián Colomer, Jorge Igual, Cristian Pulgarín-Ospina, Spiros Koulouzis, Riccardo Bianchi et al. "Federating Medical Deep Learning Models from Private Jupyter Notebooks to Distributed Institutions". Applied Sciences 13, n.º 2 (9 de janeiro de 2023): 919. http://dx.doi.org/10.3390/app13020919.
Texto completo da fonteParekh, Nisha Harish, e Mrs Vrushali Shinde. "Federated Learning : A Paradigm Shift in Collaborative Machine Learning". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, n.º 11 (10 de novembro de 2024): 1–6. http://dx.doi.org/10.55041/ijsrem38501.
Texto completo da fonteШубин, Б., Т. Максимюк, О. Яремко, Л. Фабрі e Д. Мрозек. "МОДЕЛЬ ІНТЕГРАЦІЇ ФЕДЕРАТИВНОГО НАВЧАННЯ В МЕРЕЖІ МОБІЛЬНОГО ЗВ’ЯЗКУ 5-ГО ПОКОЛІННЯ". Information and communication technologies, electronic engineering 2, n.º 1 (agosto de 2022): 26–35. http://dx.doi.org/10.23939/ictee2022.01.026.
Texto completo da fonteLi, Chengan. "Research advanced in the integration of federated learning and reinforcement learning". Applied and Computational Engineering 40, n.º 1 (21 de fevereiro de 2024): 147–54. http://dx.doi.org/10.54254/2755-2721/40/20230641.
Texto completo da fonteK. Usha Rani, Sreenivasulu Reddy L., Yaswanth Kumar Alapati, M. Katyayani, Kumar Keshamoni, A. Sree Rama Chandra Murthy,. ""Federated Learning: Advancements, Applications, and Future Directions for Collaborative Machine Learning in Distributed Environments"". Journal of Electrical Systems 20, n.º 5s (13 de abril de 2024): 165–71. http://dx.doi.org/10.52783/jes.1900.
Texto completo da fonteDelfin, Carl, Iulian Dragan, Dmitry Kuznetsov, Juan Fernandez Tajes, Femke Smit, Daniel E. Coral, Ali Farzaneh et al. "A Federated Database for Obesity Research: An IMI-SOPHIA Study". Life 14, n.º 2 (16 de fevereiro de 2024): 262. http://dx.doi.org/10.3390/life14020262.
Texto completo da fonteSeol, Mihye, e Taejoon Kim. "Performance Enhancement in Federated Learning by Reducing Class Imbalance of Non-IID Data". Sensors 23, n.º 3 (19 de janeiro de 2023): 1152. http://dx.doi.org/10.3390/s23031152.
Texto completo da fonteZhang, Yong, e Mingchuan Zhang. "A Survey of Developments in Federated Meta-Learning". Academic Journal of Science and Technology 11, n.º 2 (12 de junho de 2024): 27–29. http://dx.doi.org/10.54097/bzpfwa11.
Texto completo da fonteRaju Cherukuri, Bangar. "Federated Learning: Privacy-Preserving Machine Learning in Cloud Environments". International Journal of Science and Research (IJSR) 13, n.º 10 (5 de outubro de 2024): 1539–49. http://dx.doi.org/10.21275/ms241022095645.
Texto completo da fonteJinhyeok Jang, Jinhyeok Jang, Yoonju Oh Jinhyeok Jang, Gwonsang Ryu Yoonju Oh e Daeseon Choi Gwonsang Ryu. "Data Reconstruction Attack with Label Guessing for Federated Learning". 網際網路技術學刊 24, n.º 4 (julho de 2023): 893–903. http://dx.doi.org/10.53106/160792642023072404007.
Texto completo da fonteAlaa Hamza Omran, Sahar Yousif Mohammed e Mohammad Aljanabi. "Detecting Data Poisoning Attacks in Federated Learning for Healthcare Applications Using Deep Learning". Iraqi Journal For Computer Science and Mathematics 4, n.º 4 (26 de novembro de 2023): 225–37. http://dx.doi.org/10.52866/ijcsm.2023.04.04.018.
Texto completo da fonteGuo, Wenxin. "Overview of Research Progress and Challenges in Federated Learning". Transactions on Computer Science and Intelligent Systems Research 5 (12 de agosto de 2024): 797–804. http://dx.doi.org/10.62051/9qyaha16.
Texto completo da fonteMonteiro, Daryn, Ishaan Mavinkurve, Parth Kambli e Prof Sakshi Surve. "Federated Learning for Privacy-Preserving Machine Learning: Decentralized Model Training with Enhanced Data Security". International Journal for Research in Applied Science and Engineering Technology 12, n.º 11 (30 de novembro de 2024): 355–61. http://dx.doi.org/10.22214/ijraset.2024.65062.
Texto completo da fonteAlferaidi, Ali, Kusum Yadav, Yasser Alharbi, Wattana Viriyasitavat, Sandeep Kautish e Gaurav Dhiman. "Federated Learning Algorithms to Optimize the Client and Cost Selections". Mathematical Problems in Engineering 2022 (1 de abril de 2022): 1–9. http://dx.doi.org/10.1155/2022/8514562.
Texto completo da fonteFeng, Zecheng. "Federated Learning Security Threats and Defense Approaches". Highlights in Science, Engineering and Technology 85 (13 de março de 2024): 121–27. http://dx.doi.org/10.54097/wvfhcd40.
Texto completo da fonteNing, Weiguang, Yingjuan Zhu, Caixia Song, Hongxia Li, Lihui Zhu, Jinbao Xie, Tianyu Chen, Tong Xu, Xi Xu e Jiwei Gao. "Blockchain-Based Federated Learning: A Survey and New Perspectives". Applied Sciences 14, n.º 20 (16 de outubro de 2024): 9459. http://dx.doi.org/10.3390/app14209459.
Texto completo da fonteJitendra Singh Chouhan, Amit Kumar Bhatt, Nitin Anand. "Federated Learning; Privacy Preserving Machine Learning for Decentralized Data". Tuijin Jishu/Journal of Propulsion Technology 44, n.º 1 (24 de novembro de 2023): 167–69. http://dx.doi.org/10.52783/tjjpt.v44.i1.2234.
Texto completo da fonteMonika Dhananjay Rokade. "Advancements in Privacy-Preserving Techniques for Federated Learning: A Machine Learning Perspective". Journal of Electrical Systems 20, n.º 2s (31 de março de 2024): 1075–88. http://dx.doi.org/10.52783/jes.1754.
Texto completo da fonteLiu, Chaoyi, e Qi Zhu. "Joint Resource Allocation and Learning Optimization for UAV-Assisted Federated Learning". Applied Sciences 13, n.º 6 (15 de março de 2023): 3771. http://dx.doi.org/10.3390/app13063771.
Texto completo da fonteYarlagadda, Sneha Sree, Sai Harshith Tule e Karthik Myada. "F1 Score Based Weighted Asynchronous Federated Learning". International Journal for Research in Applied Science and Engineering Technology 12, n.º 2 (29 de fevereiro de 2024): 947–53. http://dx.doi.org/10.22214/ijraset.2024.58487.
Texto completo da fonteLiu, Jessica Chia, Jack Goetz, Srijan Sen e Ambuj Tewari. "Learning From Others Without Sacrificing Privacy: Simulation Comparing Centralized and Federated Machine Learning on Mobile Health Data". JMIR mHealth and uHealth 9, n.º 3 (30 de março de 2021): e23728. http://dx.doi.org/10.2196/23728.
Texto completo da fonteToofanee, Mohammud Shaad Ally, Mohamed Hamroun, Sabeena Dowlut, Karim Tamine, Vincent Petit, Anh Kiet Duong e Damien Sauveron. "Federated Learning: Centralized and P2P for a Siamese Deep Learning Model for Diabetes Foot Ulcer Classification". Applied Sciences 13, n.º 23 (28 de novembro de 2023): 12776. http://dx.doi.org/10.3390/app132312776.
Texto completo da fonteLi, Jipeng, Xinyi Li e Chenjing Zhang. "Analysis on Security and Privacy-preserving in Federated Learning". Highlights in Science, Engineering and Technology 4 (26 de julho de 2022): 349–58. http://dx.doi.org/10.54097/hset.v4i.923.
Texto completo da fonteWoo, Gimoon, Hyungbin Kim, Seunghyun Park, Cheolwoo You e Hyunhee Park. "Fairness-Based Multi-AP Coordination Using Federated Learning in Wi-Fi 7". Sensors 22, n.º 24 (13 de dezembro de 2022): 9776. http://dx.doi.org/10.3390/s22249776.
Texto completo da fonteDR.AR.SIVAKUMARAN, POLNENI ABHINAYA, PENDYALA SWETHA e POKALA MAHITHA. "DATA POISONING ATTACKS ON FEDERATED MACHINE LEARNING". International Journal of Engineering, Science and Advanced Technology 24, n.º 10 (2024): 188–97. http://dx.doi.org/10.36893/ijesat.2024.v24i10.022.
Texto completo da fonteChouhan, Khushi Udaysingh, Nikita Pradeep Kumar Jha, Roshni Sanjay Jha, Shaikh Insha Kamaluddin e Dr Nupur Giri. "Mobile Keyword Prediction using Federated Learning". International Journal for Research in Applied Science and Engineering Technology 11, n.º 4 (30 de abril de 2023): 3144–51. http://dx.doi.org/10.22214/ijraset.2023.50826.
Texto completo da fonteWang, Weixi. "Empowering safe and secure autonomy: Federated learning in the era of autonomous driving". Applied and Computational Engineering 51, n.º 1 (25 de março de 2024): 40–44. http://dx.doi.org/10.54254/2755-2721/51/20241158.
Texto completo da fonteAjay, Ajay, Ajay Kumar, Krishan Kant Singh Gautam, Pratibha Deshmukh, Pavithra G e Laith Abualigah. "Collaborative Intelligence for IoT: Decentralized Net security and confidentiality". Journal of Intelligent Systems and Internet of Things 13, n.º 2 (2024): 202–11. http://dx.doi.org/10.54216/jisiot.130216.
Texto completo da fonteEmmanni, Phani Sekhar. "Federated Learning for Cybersecurity in Edge and Cloud Computing". International Journal of Computing and Engineering 5, n.º 4 (12 de março de 2024): 27–38. http://dx.doi.org/10.47941/ijce.1829.
Texto completo da fonteZhang, Ticao, e Shiwen Mao. "An Introduction to the Federated Learning Standard". GetMobile: Mobile Computing and Communications 25, n.º 3 (7 de janeiro de 2022): 18–22. http://dx.doi.org/10.1145/3511285.3511291.
Texto completo da fonteLee, Haeyun, Young Jun Chai, Hyunjin Joo, Kyungsu Lee, Jae Youn Hwang, Seok-Mo Kim, Kwangsoon Kim et al. "Federated Learning for Thyroid Ultrasound Image Analysis to Protect Personal Information: Validation Study in a Real Health Care Environment". JMIR Medical Informatics 9, n.º 5 (18 de maio de 2021): e25869. http://dx.doi.org/10.2196/25869.
Texto completo da fonteTian, Junfeng, Xinyao Chen e Shuo Wang. "Few-Shot Federated Learning: A Federated Learning Model for Small-Sample Scenarios". Applied Sciences 14, n.º 9 (4 de maio de 2024): 3919. http://dx.doi.org/10.3390/app14093919.
Texto completo da fonteHang, Yifei. "Federated learning-based neural network for hotel cancellation prediction". Applied and Computational Engineering 45, n.º 1 (15 de março de 2024): 190–95. http://dx.doi.org/10.54254/2755-2721/45/20241092.
Texto completo da fonteGao, Yuan. "Federated learning: Impact of different algorithms and models on prediction results based on fashion-MNIST data set". Applied and Computational Engineering 86, n.º 1 (31 de julho de 2024): 210–18. http://dx.doi.org/10.54254/2755-2721/86/20241594.
Texto completo da fonteAl-Tameemi, M., M. B. Hassan e S. A. Abass. "Federated Learning (FL) – Overview". LETI Transactions on Electrical Engineering & Computer Science 17, n.º 5 (2024): 74–82. http://dx.doi.org/10.32603/2071-8985-2024-17-5-74-82.
Texto completo da fonteLi, Sirui, Keyu Shao e Jingqi Zhou. "Research Advanced in Federated Learning". Applied and Computational Engineering 40, n.º 1 (21 de fevereiro de 2024): 140–46. http://dx.doi.org/10.54254/2755-2721/40/20230640.
Texto completo da fonteChen, Gaofeng, e Qingtao Wu. "A Review of Personalized Federated Reinforcement Learning". International Journal of Computer Science and Information Technology 3, n.º 1 (15 de junho de 2024): 1–9. http://dx.doi.org/10.62051/ijcsit.v3n1.01.
Texto completo da fonteJiang, Jingyan, Liang Hu, Chenghao Hu, Jiate Liu e Zhi Wang. "BACombo—Bandwidth-Aware Decentralized Federated Learning". Electronics 9, n.º 3 (5 de março de 2020): 440. http://dx.doi.org/10.3390/electronics9030440.
Texto completo da fonteShrivastava, Arpit. "Privacy-Centric AI: Navigating the Landscape with Federated Learning". International Journal for Research in Applied Science and Engineering Technology 12, n.º 5 (31 de maio de 2024): 357–63. http://dx.doi.org/10.22214/ijraset.2024.61000.
Texto completo da fonteJin, Xuan, Yuanzhi Yao e Nenghai Yu. "Efficient secure aggregation for privacy-preserving federated learning based on secret sharing". JUSTC 53, n.º 4 (2023): 1. http://dx.doi.org/10.52396/justc-2022-0116.
Texto completo da fonteTian, Mengmeng. "An Contract Theory based Federated Learning Aggregation Algorithm in IoT Network". Journal of Physics: Conference Series 2258, n.º 1 (1 de abril de 2022): 012008. http://dx.doi.org/10.1088/1742-6596/2258/1/012008.
Texto completo da fonteYang, Xun, Shuwen Xiang, Changgen Peng, Weijie Tan, Yue Wang, Hai Liu e Hongfa Ding. "Federated Learning Incentive Mechanism with Supervised Fuzzy Shapley Value". Axioms 13, n.º 4 (11 de abril de 2024): 254. http://dx.doi.org/10.3390/axioms13040254.
Texto completo da fonteLuo, Yihang, Bei Gong, Haotian Zhu e Chong Guo. "A Trusted Federated Incentive Mechanism Based on Blockchain for 6G Network Data Security". Applied Sciences 13, n.º 19 (22 de setembro de 2023): 10586. http://dx.doi.org/10.3390/app131910586.
Texto completo da fonte