Teses / dissertações sobre o tema "Fast Boundary Element Methods"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores trabalhos (teses / dissertações) para estudos sobre o assunto "Fast Boundary Element Methods".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja as teses / dissertações das mais diversas áreas científicas e compile uma bibliografia correta.
NOVELINO, LARISSA SIMOES. "APPLICATION OF FAST MULTIPOLE TECHNIQUES IN THE BOUNDARY ELEMENT METHODS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=37003@1.
Texto completo da fonteCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Este trabalho visa à implementação de um programa de elementos de contorno para problemas com milhões de graus de liberdade. Isto é obtido com a implementação do Método Fast Multipole (FMM), que pode reduzir o número de operações, para a solução de um problema com N graus de liberdade, de O(N(2)) para O(NlogN) ou O(N). O uso de memória também é reduzido, por não haver o armazenamento de matrizes de grandes dimensões como no caso de outros métodos numéricos. A implementação proposta é baseada em um desenvolvimento consistente do convencional, Método de colocação dos elementos de contorno (BEM) – com conceitos provenientes do Hibrido BEM – para problemas de potencial e elasticidade de larga escala em 2D e 3D. A formulação é especialmente vantajosa para problemas de topologia complicada ou que requerem soluções fundamentais complicadas. A implementação apresentada, usa um esquema para expansões de soluções fundamentais genéricas em torno de níveis hierárquicos de polos campo e fonte, tornando o FMM diretamente aplicável para diferentes soluções fundamentais. A árvore hierárquica dos polos é construída a partir de um conceito topológico de superelementos dentro de superelementos. A formulação é inicialmente acessada e validada em termos de um problema de potencial 2D. Como resolvedores iterativos não são necessários neste estágio inicial de simulação numérica, podese acessar a eficiência relativa à implementação do FMM.
This work aims to present an implementation of a boundary element solver for problems with millions of degrees of freedom. This is achieved through a Fast Multipole Method (FMM) implementation, which can lower the number of operations for solving a problem, with N degrees of freedom, from O(N(2)) to O(NlogN) or O(N). The memory usage is also very small, as there is no need to store large matrixes such as required by other numerical methods. The proposed implementations are based on a consistent development of the conventional, collocation boundary element method (BEM) - with concepts taken from the variationally-based hybrid BEM - for large-scale 2D and 3D problems of potential and elasticity. The formulation is especially advantageous for problems of complicated topology or requiring complicated fundamental solutions. The FMM implementation presented in this work uses a scheme for expansions of a generic fundamental solution about hierarchical levels of source and field poles. This makes the FMM directly applicable to different kinds of fundamental solutions. The hierarchical tree of poles is built upon a topological concept of superelements inside superelements. The formulation is initially assessed and validated in terms of a simple 2D potential problem. Since iterative solvers are not required in this first step of numerical simulations, an isolated efficiency assessment of the implemented fast multipole technique is possible.
Bapat, Milind S. "New Developments in Fast Boundary Element Method". University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1331296947.
Texto completo da fonteDing, Jian. "Fast boundary element method solutions for three dimensional large scale problems". Available online, Georgia Institute of Technology, 2005, 2004. http://etd.gatech.edu/theses/available/etd-01102005-174227/unrestricted/ding%5Fjian%5F200505%5Fphd.pdf.
Texto completo da fonteMucha, Peter, Committee Member ; Qu, Jianmin, Committee Member ; Ye, Wenjing, Committee Chair ; Hesketh, Peter, Committee Member ; Gray, Leonard J., Committee Member. Vita. Includes bibliographical references.
Bagur, Laura. "Modeling fluid injection effects in dynamic fault rupture using Fast Boundary Element Methods". Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAE010.
Texto completo da fonteEarthquakes due to either natural or anthropogenic sources cause important human and material damage. In both cases, the presence of pore fluids influences the triggering of seismic instabilities.A new and timely question in the community is to show that the earthquake instability could be mitigated by active control of the fluid pressure. In this work, we study the ability of Fast Boundary Element Methods (Fast BEMs) to provide a multi-physic large-scale robust solver required for modeling earthquake processes, human induced seismicity and their mitigation.In a first part, a Fast BEM solver with different temporal integration algorithms is used. We assess the performances of various possible adaptive time-step methods on the basis of 2D seismic cycle benchmarks available for planar faults. We design an analytical aseismic solution to perform convergence studies and provide a rigorous comparison of the capacities of the different solving methods in addition to the seismic cycles benchmarks tested. We show that a hybrid prediction-correction / adaptive time-step Runge-Kutta method allows not only for an accurate solving but also to incorporate both inertial effects and hydro-mechanical couplings in dynamic fault rupture simulations.In a second part, once the numerical tools are developed for standard fault configurations, our objective is to take into account fluid injection effects on the seismic slip. We choose the poroelastodynamic framework to incorporate injection effects on the earthquake instability. A complete poroelastodynamic model would require non-negligible computational costs or approximations. We justify rigorously which predominant fluid effects are at stake during an earthquake or a seismic cycle. To this aim, we perform a dimensional analysis of the equations, and illustrate the results using a simplified 1D poroelastodynamic problem. We formally show that at the timescale of the earthquake instability, inertial effects are predominant whereas a combination of diffusion and elastic deformation due to pore pressure change should be privileged at the timescale of the seismic cycle, instead of the diffusion model mainly used in the literature
SHEN, LIANG. "ADAPTIVE FAST MULTIPOLE BOUNDARY ELEMENT METHODS FOR THREE-DIMENSIONAL POTENTIAL AND ACOUSTIC WAVE PROBLEMS". University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1193706024.
Texto completo da fonteMITRA, KAUSIK PRADIP. "APPLICATION OF MULTIPOLE EXPANSIONS TO BOUNDARY ELEMENT METHOD". University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1026411773.
Texto completo da fonteRahman, Mizanur. "Fast boundary element methods for integral equations on infinite domains and scattering by unbounded surfaces". Thesis, Brunel University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324648.
Texto completo da fonteDing, Jian. "Fast Boundary Element Method Solutions For Three Dimensional Large Scale Problems". Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6830.
Texto completo da fonteGrasso, Eva. "Modelling visco-elastic seismic wave propagation : a fast-multipole boundary element method and its coupling with finite elements". Phd thesis, Université Paris-Est, 2012. http://tel.archives-ouvertes.fr/tel-00730752.
Texto completo da fonteBAPAT, MILIND SHRIKANT. "FAST MULTIPOLE BOUNDARY ELEMENT METHOD FOR SOLVING TWO-DIMENSIONAL ACOUSTIC WAVE PROBLEMS". University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1163773308.
Texto completo da fonteLi, Yuxiang. "A Fast Multipole Boundary Element Method for Solving Two-dimensional Thermoelasticity Problems". University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1397477834.
Texto completo da fonteHuang, Shuo. "A Fast Multipole Boundary Element Method for the Thin Plate Bending Problem". University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1368026582.
Texto completo da fontePEIXOTO, HELVIO DE FARIAS COSTA. "A STUDY OF THE FAST MULTIPOLE METHOD APPLIED TO BOUNDARY ELEMENT PROBLEMS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=24364@1.
Texto completo da fonteCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
FUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
BOLSA NOTA 10
Este trabalho faz parte de um projeto para a implementação de um programa que possa simular problemas com milhões de graus de liberdade em um computador pessoal. Para isto, combina-se o Método Fast Multipole (FMM) com o Método Expedito dos Elementos de Contorno (EBEM), além de serem utilizados resolvedores iterativos de sistemas de equações. O EBEM é especialmente vantajoso em problemas de complicada topologia, ou que usem funções fundamentais muito complexas. Neste trabalho apresenta-se uma formulação para o Método Fast Multipole (FMM) que pode ser usada para, virtualmente, qualquer função e também para contornos curvos, o que parece ser uma contribuição original. Esta formulação apresenta um formato mais compacto do que as já existentes na literatura, e também pode ser diretamente aplicada a diversos tipos de problemas praticamente sem modificação de sua estrutura básica. É apresentada a validação numérica da formulação proposta. Sua utilização em um contexto do EBEM permite que um programa prescinda de integrações sobre segmentos – mesmo curvos – do contorno quando estes estão distantes do ponto fonte.
This is part of a larger project that aims to develop a program able to simulate problems with millions of degrees of freedom on a personal computer. The Fast Multipole Method (FMM) is combined with the Expedite Boundary Element Method (EBEM) for integration, in the project s final version, with iterative equations solvers. The EBEM is especially advantageous when applied to problems with complicated topology as well as in the case of highly complex fundamental solutions. In this work, a FMM formulation is proposed for the use with virtually any type of fundamental solution and considering curved boundaries, which seems to be an original contribution. This formulation presents a more compact format than the ones shown in the technical literature, and can be directly applied to different kinds of problems without the need of manipulation of its basic structure, being numerically validated for a few applications. Its application in the context of the EBEM leads to the straightforward implementation of higher-order elements for generally curved boundaries that dispenses integration when the boundary segment is relatively far from the source point.
Harbrecht, Helmut, e Reinhold Schneider. "Wavelets for the fast solution of boundary integral equations". Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200600540.
Texto completo da fonteKachanovska, Maryna. "Fast, Parallel Techniques for Time-Domain Boundary Integral Equations". Doctoral thesis, Universitätsbibliothek Leipzig, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-132183.
Texto completo da fonteBrunner, Dominik. "Fast boundary element methods for large-scale simulations of the vibro-acoustic behavior of ship-like structures". Tönning Lübeck Marburg Der Andere Verl, 2009. http://d-nb.info/99703128X/04.
Texto completo da fonteFischer, Matthias. "The fast multipole boundary element method and its application to structure acoustic field interaction". [S.l. : s.n.], 2004. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11380456.
Texto completo da fonteHuang, Shuo. "A New Multidomain Approach and Fast Direct Solver for the Boundary Element Method". University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1505125721346283.
Texto completo da fonteKachanovska, Maryna. "Fast, Parallel Techniques for Time-Domain Boundary Integral Equations". Doctoral thesis, Max-Planck-Institut für Mathematik in den Naturwissenschaften, 2013. https://ul.qucosa.de/id/qucosa%3A12278.
Texto completo da fonteBallani, Jonas. "Fast Evaluation of Near-Field Boundary Integrals using Tensor Approximations". Doctoral thesis, Universitätsbibliothek Leipzig, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-97317.
Texto completo da fonteKarban, Ugur. "Three-dimensional Flow Solutions For Non-lifting Flows Using Fast Multipole Boundary Element Method". Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12615042/index.pdf.
Texto completo da fonteBrancati, Alessandro. "Boundary element method for fast solution of acoustic problems : active and passive noise control". Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/6139.
Texto completo da fonteWu, Shu-Wei. "A fast, robust and accurate procedure for radiation and scattering analyses of submerged elastic axisymmetric bodies". Thesis, Imperial College London, 1990. http://hdl.handle.net/10044/1/46618.
Texto completo da fonteLee, Jimin. "Earthquake site effect modeling in sedimentary basins using a 3-D indirect boundary element-fast multipole method". Diss., Online access via UMI:, 2007.
Encontre o texto completo da fonteWilkes, Daniel. "The development of a fast multipole boundary element method for coupled acoustic and elastic problems". Thesis, Curtin University, 2014. http://hdl.handle.net/20.500.11937/122.
Texto completo da fonteOzyazicioglu, Mehmet H. "A Boundary Element Formulation For Axi-symmetric Problems In Poro-elasticity". Phd thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/3/12607351/index.pdf.
Texto completo da fonte#952
z space via inverse FFT. The success of the method is assessed by problems with analytical solutions. A good fit is observed in each case, which indicates effectiveness and reliability of the present method.
Pester, M., e S. Rjasanow. "A parallel version of the preconditioned conjugate gradient method for boundary element equations". Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199800455.
Texto completo da fonteVuylsteke, Xavier. "Development of a reference method based on the fast multipole boundary element method for sound propagation problems in urban environments : formalism, improvements & applications". Thesis, Paris Est, 2014. http://www.theses.fr/2014PEST1174/document.
Texto completo da fonteDescribed as one of the best ten algorithms of the 20th century, the fast multipole formalism applied to the boundary element method allows to handle large problems which were inconceivable only a few years ago. Thus, the motivation of the present work is to assess the ability, as well as the benefits in term of computational resources provided by the application of this formalism to the boundary element method, for solving sound propagation problems and providing reference solutions, in three dimensional dense urban environments, in the aim of assessing or improving fast engineering tools. We first introduce the mathematical background required for the derivation of the boundary integral equation, for solving sound propagation problems in unbounded domains. We discuss the conventional and hyper-singular boundary integral equation to overcome the numerical artifact of fictitious eigen-frequencies, when solving exterior problems. We then make a brief historical and technical overview of the fast multipole principle and introduce the mathematical tools required to expand the elementary solution of the Helmholtz equation and describe the main steps, from a numerical viewpoint, of fast multipole calculations. A sound propagation problem in a city block made of 5 buildings allows us to highlight instabilities in the recursive computation of translation matrices, resulting in discontinuities of the surface pressure and a no convergence of the iterative solver. This observation leads us to consider the very recent work of Gumerov & Duraiswamy, related to a ``stable'' recursive computation of rotation matrices coefficients in the RCR decomposition. This new improved algorithm has been subsequently assessed successfully on a multi scattering problem up to a dimensionless domain size equal to 207 wavelengths. We finally performed comparisons between a BEM algorithm, extit{Micado3D}, the FMBEM algorithm and a ray tracing algorithm, Icare, for the calculation of averaged pressure levels in an opened and closed court yards. The fast multipole algorithm allowed to validate the results computed with Icare in the opened court yard up to 300 Hz corresponding, (i.e. 100 wavelengths), while in the closed court yard, a very sensitive area without direct or reflective fields, further investigations related to the preconditioning seem required to ensure reliable solutions provided by iterative solver based algorithms
Fischer, Matthias [Verfasser]. "The fast multipole boundary element method and its application to structure-acoustic field interaction / Institut A für Mechanik der Universität Stuttgart. Matthias Fischer". Stuttgart : Inst. A für Mechanik, 2004. http://d-nb.info/972310819/34.
Texto completo da fontePEIXOTO, HELVIO DE FARIAS COSTA. "A FAST MULTIPOLE METHOD FOR HIGH ORDER BOUNDARY ELEMENTS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=34740@1.
Texto completo da fonteCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
FUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
BOLSA NOTA 10
Desde a década de 1990, o Método Fast Multipole (FMM) tem sido usado em conjunto com o Métodos dos Elementos de Contorno (BEM) para a simulação de problemas de grande escala. Este método utiliza expansões em série de Taylor para aglomerar pontos da discretização do contorno, de forma a reduzir o tempo computacional necessário para completar a simulação. Ele se tornou uma ferramenta bastante importante para os BEMs, pois eles apresentam matrizes cheias e assimétricas, o que impossibilita a utilização de técnicas de otimização de solução de sistemas de equação. A aplicação do FMM ao BEM é bastante complexa e requer muita manipulação matemática. Este trabalho apresenta uma formulação do FMM que é independente da solução fundamental utilizada pelo BEM, o Método Fast Multipole Generalizado (GFMM), que se aplica a elementos de contorno curvos e de qualquer ordem. Esta característica é importante, já que os desenvolvimentos de fast multipole encontrados na literatura se restringem apenas a elementos constantes. Todos os aspectos são abordados neste trabalho, partindo da sua base matemática, passando por validação numérica, até a solução de problemas de potencial com muitos milhões de graus de liberdade. A aplicação do GFMM a problemas de potencial e elasticidade é discutida e validada, assim como os desenvolvimentos necessários para a utilização do GFMM com o Método Híbrido Simplificado de Elementos de Contorno (SHBEM). Vários resultados numéricos comprovam a eficiência e precisão do método apresentado. A literatura propõe que o FMM pode reduzir o tempo de execução do algoritmo do BEM de O(N2) para O(N), em que N é o número de graus de liberdade do problema. É demonstrado que esta redução é de fato possível no contexto do GFMM, sem a necessidade da utilização de qualquer técnica de otimização computacional.
The Fast Multipole Method (FMM) has been used since the 1990s with the Boundary Elements Method (BEM) for the simulation of large-scale problems. This method relies on Taylor series expansions of the underlying fundamental solutions to cluster the nodes on the discretised boundary of a domain, aiming to reduce the computational time required to carry out the simulation. It has become an important tool for the BEMs, as they present matrices that are full and nonsymmetric, so that the improvement of storage allocation and execution time is not a simple task. The application of the FMM to the BEM ends up with a very intricate code, and usually changing from one problem s fundamental solution to another is not a simple matter. This work presents a kernel-independent formulation of the FMM, here called the General Fast Multipole Method (GFMM), which is also able to deal with high order, curved boundary elements in a straightforward manner. This is an important feature, as the fast multipole implementations reported in the literature only apply to constant elements. All necessary aspects of this method are presented, starting with the mathematical basics of both FMM and BEM, carrying out some numerical assessments, and ending up with the solution of large potential problems. The application of the GFMM to both potential and elasticity problems is discussed and validated in the context of BEM. Furthermore, the formulation of the GFMM with the Simplified Hybrid Boundary Elements Method (SHBEM) is presented. Several numerical assessments show that the GFMM is highly efficient and may be as accurate as arbitrarily required, for problems with up to many millions of degrees of freedom. The literature proposes that the FMM is capable of reducing the time complexity of the BEM algorithms from O(N2) to O(N), where N is the number of degrees of freedom. In fact, it is shown that the GFMM is able to arrive at such time reduction without resorting to techniques of computational optimisation.
Keuchel, Sören [Verfasser]. "Aufwandsreduzierungen in der Fast-Multipole-Boundary-Elemente-Methode / Sören Keuchel". Aachen : Shaker, 2017. http://d-nb.info/1138177822/34.
Texto completo da fonteOstrowski, Jörg. "Boundary element methods for inductive hardening". [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=973933941.
Texto completo da fonteOf, Günther, Gregory J. Rodin, Olaf Steinbach e Matthias Taus. "Coupling Methods for Interior Penalty Discontinuous Galerkin Finite Element Methods and Boundary Element Methods". Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-96885.
Texto completo da fonteOnyango, Thomas Tonny Mboya. "Boundary element methods for solving inverse boundary conditions identification problems". Thesis, University of Leeds, 2008. http://etheses.whiterose.ac.uk/11283/.
Texto completo da fonteShah, Nawazish A. "Boundary element methods for road vehicle aerodynamics". Thesis, Loughborough University, 1985. https://dspace.lboro.ac.uk/2134/26942.
Texto completo da fonteLeon, Ernesto Pineda. "Dual boundary element methods for creep fracture". Thesis, Queen Mary, University of London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435177.
Texto completo da fonteOLIVEIRA, MARIA FERNANDA FIGUEIREDO DE. "CONVENTIONAL, HYBRID AND SIMPLIFIED BOUNDARY ELEMENT METHODS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2004. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=5562@1.
Texto completo da fonteApresentam-se as formulações, consolidando a nomenclatura e os principais conceitos dos métodos de elementos de contorno: convencional (MCCEC), híbrido de tensões (MHTEC), híbrido de deslocamentos (MHDEC) e híbrido simplificado de tensões (MHSTEC). proposto o método híbrido simplificado de deslocamentos (MHSDEC), em contrapartida ao MHSTEC, baseando-se nas mesmas hipóteses de aproximação de tensões e deslocamentos do MHDEC e supondo que a solução fundamental em termos de tensões seja válida no contorno. Como decorrência do MHSTEC e do MHSDEC, é apresentado também o método híbrido de malha reduzida dos elementos de contorno (MHMREC), com aplicação computacionalmente vantajosa a problemas no domínio da freqüência ou envolvendo materiais não-homogêneos. A partir da investigação das equações matriciais desses métodos, são identificadas quatro novas relações matriciais, das quais uma verifica-se como válida para a obtenção dos elementos das matrizes de flexibilidade e de deslocamento que não podem ser determinados por integração ou avaliação direta. Também é proposta a correta consideração, ainda não muito bem explicada na literatura, de que forças de superfície devem ser interpoladas em função de atributos de superfície e não de atributos nodais. São apresentadas aplicações numéricas para problemas de potencial para cada método mencionado, em que é verificada a validade das novas relações matriciais.
A consolidated, unified formulation of the conventional (CCBEM), hybrid stress (HSBEM), hybrid displacement (HDBEM) and simplified hybrid stress (SHSBEM) boundary element methods is presented. As a counterpart of SHSBEM, the simplified hybrid displacement boundary element method (SHDBEM) is proposed on the basis of the same stress and displacement approximation hypotheses of the HDBEM and on the assumption that stress fundamental solutions are also valid on the boundary. A combination of the SHSBEM and the SHDBEM gives rise to a provisorily called mesh-reduced hybrid boundary element method (MRHBEM), which seems computationally advantageous when applied to frequency domain problems or non-homogeneous materials. Four new matrix relations are identified, one of which may be used to obtain the flexibility and displacement matrix coefficients that cannot be determined by integration or direct evaluation. It is also proposed the correct consideration, still not well explained in the technical literature, that traction forces should be interpolated as functions of surface and not of nodal attributes. Numerical examples of potential problems are presented for each method, in which the validity of the new matrix relations is verified.
Ortiz, guzman John Erick. "Fast boundary element formulations for electromagnetic modelling in biological tissues". Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2017. http://www.theses.fr/2017IMTA0051/document.
Texto completo da fonteThis thesis presents several new techniques for rapidly converging boundary element solutions of electromagnetic problems. A special focus has been given to formulations that are relevant for electromagnetic solutions in biological tissues both at low and high frequencies. More specifically, as pertains the low-frequency regime, this thesis presents new schemes for preconditioning and accelerating the Forward Problem in Electroencephalography (EEG). The regularization strategy leveraged on a new Calderon formula, obtained in this thesis work, while the acceleration leveraged on an Adaptive-Cross-Approximation paradigm. As pertains the higher frequency regime, with electromagnetic dosimetry applications in mind, the attention of this work focused on the study and regularization of the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) integral equation via hierarchical techniques. In this effort, a complete analysis of the equation for both simply and non-simply connected geometries has been obtained. This allowed to design a new hierarchical basis regularization strategy to obtain an equation for penetrable media which is stable in a wide spectrum of frequencies. A final part of this thesis work presents a propaedeutic discretization framework and associated computational library for 2D Calderon research which will enable our future investigations in tomographic imaging
Hamina, M. (Martti). "Some boundary element methods for heat conduction problems". Doctoral thesis, University of Oulu, 2000. http://urn.fi/urn:isbn:951425614X.
Texto completo da fonteMarin, Oana. "Boundary integral methods for Stokes flow : Quadrature techniques and fast Ewald methods". Doctoral thesis, KTH, Skolan för teknikvetenskap (SCI), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-105540.
Texto completo da fonteQC 20121122
Nesemann, Leo [Verfasser]. "Finite element and boundary element methods for contact with adhesion / Leo Nesemann". Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2011. http://d-nb.info/1013365542/34.
Texto completo da fontePeng, Xuan. "Isogeometric boundary element methods for linear elastic fracture mechanics". Thesis, Cardiff University, 2016. http://orca.cf.ac.uk/92543/.
Texto completo da fonteVartiainen, Markku Juhani. "Singular boundary element methods for the hyperbolic wave equation". Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621821.
Texto completo da fonteSuchivoraphanpong, Varanyu. "Fast integral equation methods for large acoustic scattering analyses". Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312269.
Texto completo da fonteLayton, Simon. "Fast multipole boundary element solutions with inexact Krylov iterations and relaxation strategies". Thesis, Boston University, 2013. https://hdl.handle.net/2144/11115.
Texto completo da fonteBoundary element methods (BEM) have been used for years to solve a multitude of engineering problems, ranging from Bioelectrostatics, to fluid flows over micro-electromechanical devices and deformations of cell membranes. Only requiring the discretization of a surface into panels rather than the entire domain, they effectively reduce the dimensionality of a problem by one. This reduction in dimensionality nevertheless comes at a cost. BEM requires the solution of a large, dense linear system with each matrix element formed of an integral between two panels, often performed used an iterative solver based on Krylov subspace methods. This requires the repeated calculation of a matrix vector product that can be approximated using a hierarchical approximation known as the fast multipole method (FMM). While adding complexity, this reduces order of the time-to-solution from O(cN^2) to OcN), where c is some function of the condition number of the dense matrix. This thesis obtains algorithmic speedups for the solutions of FMM-BEM systems by applying the mathematical theory behind inexact matrix-vector products to our solver, implementing a relaxation scheme to control the error incurred by the FMM in order to minimize the total time-to-solution. The theory is extensively verified for both Laplace equation and Stokes flow problems, with an investigation to determine how further problems may benefit from the addition of a relaxed solver. We also present experiments for the Stokes flow around both single and multiple red blood cells, an area of ongoing research, showing good speedups that would be applicable for any other code that chose to implement a similar relaxed solver. All of these results are obtained with an easy-to-use, extensible and open-source FMM-BEM code.
雷哲翔 e Zhexiang Lei. "Time domain boundary element method & its applications". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B31233703.
Texto completo da fonteLei, Zhexiang. "Time domain boundary element method & its applications /". [Hong Kong : University of Hong Kong], 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13570365.
Texto completo da fonteHarbrecht, Helmut, e Reinhold Schneider. "Wavelet based fast solution of boundary integral equations". Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200600649.
Texto completo da fonteTang, W. "A generalized approach for transforming domain integrals into boundary integrals in boundary element methods". Thesis, University of Southampton, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378981.
Texto completo da fonteWeggler, Lucy Verfasser], e Sergej [Akademischer Betreuer] [Rjasanow. "High order boundary element methods / Lucy Weggler. Betreuer: Sergej Rjasanow". Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2012. http://d-nb.info/1051586801/34.
Texto completo da fonte